期刊文献+

求解不规则区域上椭圆方程的一种Cartesian网格方法及其在Navier-Stokes方程中的应用 被引量:1

A Cartesian Grid Method for the Elliptic Equations on Irregular Domains with Application to the Navier-Stokes Equations
下载PDF
导出
摘要 提出了一种求解不规则边界上有Robin边界条件的椭圆方程的Cartesian网格方法。该椭圆方程经重写后转化为定义在矩形区域上的椭圆界面问题,进而采用水平集浸入界面方法(IIM)对其进行求解。特别地,Robin边界条件采用单边三次插值离散。随后,利用该方法求解定义在不规则区域上的Navier-Stokes程。Navier-Stokes方程的解法器由求解速度方程的虚拟流体方法(GFM)和辅助变量方程的IIM耦合而成。数值测试表明,椭圆方程的解法器能够产生二阶精度的数值解和梯度,而且能够快速收敛,Navier-Stokes方程的解法器产生了二阶精度的速度及一阶精度的压力。圆柱绕流的仿真验证了Navier-Stokes方程解法器的鲁棒性。 A Cartesian grid method is presented for solving elliptic equation on irregular domains with Robin boundary condition in this paper.The elliptic equation is reformulated into an elliptic interface problem on a larger regular domain,then solved by using the level-set immersed interface method(IIM)recently developed.In particular,the Robin boundary condition is discretized using one-sided cubic interpolation.The method is applied to solving the Navier-Stokes equations on irregular domains.The Navier-Stokes solver couples the ghost fluid method for the velocity equations and the IIM for the auxiliary variable equation.Numerical tests show that second-order accuracy is achieved in both solution and gradient for the elliptic solver,and with fast convergence.The Navier-Stokes solver produces second-order accurate velocity and one-order accurate pressure.The robustness of the Navier-Stokes solver is demonstrated through simulations of flow around a circular cylinder.
作者 史卫东 徐建军 岳孝强 SHI Weidong;XU Jianjun;YUE Xiaoqiang(School of Applied Mathematics,Shanxi University of Finance and Economics,Taiyuan 030006;Chongqing Institute of Green and Intelligent Technology,Chinese Academy of Sciences,Chongqing 400714;Hunan Key Laboratory for Computation and Simulation in Science and Engineering,Key Laboratory of Intelligent Computing&Information Processing of Ministry of Education,Xiangtan 411105)
出处 《工程数学学报》 CSCD 北大核心 2023年第5期779-792,共14页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(11601462 11971414) 湖南省科技厅科研基金(2018WK4006) 山西财经大学青年科研基金(QN2019023) 科学挑战计划(TZZT2016002)。
关键词 椭圆方程 NAVIER-STOKES方程 Cartesian网格方法 水平集方法 浸入界面方法 elliptic equation Navier-Stokes equations Cartesian grid method level-set method immersed interface method
  • 相关文献

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部