摘要
Scholte waves at the seafloor interface are generally identified by their velocity features and seismic fields,which are measured using ocean bottom seismometers and geophones.These methods are effective in cases where there is a considerable difference between the velocities of Scholte and acoustic waves in water.However,they are ineffective when the velocities of these two types of waves are close to each other.Thus,in this paper,a method based on acoustic pressure field measurement for identifying Scholte waves is proposed according to their excitation and propagation characteristics.The proposed method can overcome the limitations on the velocities of two types of waves.A tank experiment is designed and conducted according to the proposed method,and an ocean environment is scaled down to the laboratory size.Acoustic measurements are obtained along virtual arrays in the water column using a robotic apparatus.Experiments show that changes in Scholte wave amplitudes,depending on different source depths and propagation distances,are consistent with the theoretical results.This means that Scholte waves generated at the seafloor interface are successfully measured and identified in the acoustic pressure field.
基金
the National Natural Science Foundation of China(No.11474258)
the State Key Laboratory of Acoustics(No.SKLA202206)。