期刊文献+

Revealing the spacing effect of neighboring side-chains in modulating molecular aggregation and orientation of M-series acceptors

原文传递
导出
摘要 Controlling the aggregation of small-molecule acceptors(SMAs)is essential to obtain an optimal morphology and to improve the photovoltaic performance of polymer solar cells(PSCs).However,reducing intermolecular aggregation of SMAs is usually accompanied by the disruption of compact molecular packing thereby leading to their decreased electron mobilities.Here,two novel M-series SMAs(MD1T and MD2T)based on ladder-type heterononacenes with neighboring side-chains separated by one or two thiophene rings are designed and synthesized.It is found that shortening the spacing of the neighboring side-chains of the SMAs can greatly alleviate the intermolecular aggregation and alter the molecular orientation from bimodal edge-on/face-on to predominant face-on while maintaining the compact molecular packing.As a result,a more favorable morphology with smaller domain sizes is formed for the MD1T-based blend films,which greatly improves the charge generation and charge transport for the corresponding PSCs.The best-performing MD1T-based device affords an efficiency of 12.43%,over seven times higher than that of the MD2T-based device.This work reveals the importance of the spacing between the neighboring side-chains in modulating the molecular aggregation and active layer morphology,and the obtained structure-performance relationships shall provide important guidance for designing highly efficient SMAs.
出处 《Aggregate》 2023年第4期166-176,共11页 聚集体(英文)
基金 National Natural Science Foundation of China,Grant/Award Numbers:52130306,22075287,22101285 Program of Youth Innovation Promotion Association CAS,Grant/Award Number:2021299。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部