期刊文献+

Multi-objective optimisation with hybrid machine learning strategy for complex catalytic processes

原文传递
导出
摘要 Catalytic chemical processes such as hydrocracking,gasification and pyrolysis play a vital role in the renewable energy and net zero transition.Due to the complex and non-linear behaviours during operation,catalytic chemical processes require a powerful modelling tool for prediction and optimisation for smart operation,speedy green process routes discovery and rapid process design.However,challenges remain due to the lack of an effective modelling and optimisation toolbox,which requires not only a precise analysis but also a fast optimisation.Here,we propose a hybrid machine learning strategy by embedding the physics-based continuum lumping kinetic model into the data-driven artificial neural network framework.This hybrid model is adopted as the surrogate model in the multi-objective optimisation and demonstrated in the benchmarking of a hydrocracking process.The results show that the novel hybrid surrogate model exhibits the mean square error less than 0.01 by comparing with the physics-based simulation results.This well-trained hybrid model was then integrated with non-dominated-sort genetic algorithm(NSGA-II)as the surrogate model to evaluate and optimise the yield and selectivity of the hydrocracking process.The Pareto front from the multi-objective optimisation was able to identify the trade-off curve between the objective functions which is essential for the decision-making during process design.Our work indicates that adopting the hybrid machine learning strategy as the surrogate model in the multi-objective optimisation is a promising approach in various complex catalytic chemical processes to enable an accurate computation as well as a rapid optimisation.
出处 《Energy and AI》 2022年第1期120-130,共11页 能源与人工智能(英文)
基金 The work is supported by the PhD studentship provided by the Department of Chemical Engineering,Loughborough University.Jin Xuan would like to acknowledge the support from EPSRC under the grant numbers EP/V042432/1 and EP/V011863/1.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部