摘要
对现有腐蚀领域常用腐蚀预测方法,包括函数模型、灰色理论模型、神经网络预测模型,剂量响应函数模型和随机森林模型等进行总结分析,并将现有的腐蚀预测模型分为腐蚀-时间和腐蚀-环境预测模型,介绍了不同腐蚀预测模型的特点和适用范围等。最后,根据电力行业的特点对金属材料的腐蚀预测研究提出了一些展望。
Metallic materials for electrical equipment are affected by many factors related with environment during service,and their corrosion behavior is very complex,therefore,which is difficult to be accurately predicted.The development of computer technology and data analysis technology enriches the prediction methods for corrosion behavior of metallic materials with better accuracy.This paper summarizes and analyzes the existing common corrosion prediction methods in the field of corrosion,including function model,grey theory model,neural network prediction model,dose response function model and random forest model etc.,and which then are classified into two types,namely corrosion-time models and corrosion-environment prediction models.Furthermore,the characteristics and application scope of different corrosion prediction models are introduced.Finally,prospects for the corrosion prediction of metallic materials are put forward especially in terms of the demands of power industry.
作者
姚勇
刘国军
黎石竹
刘淼然
陈川
黄廷城
林海
李展江
刘雨薇
王振尧
YAO Yong;LIU Guojun;LI Shizhu;LIU Miaoran;CHEN Chuan;HUANG Tingcheng;LIN Hai;LI Zhanjiang;LIU Yuwei;WANG Zhenyao(Guangdong Energy Group Science and Technology Research Institute Co.,Ltd.,Guangzhou 510630,China;China National Electric Apparatus Research Institute Co.,Ltd.,Guangzhou 510799,China;Zhanjiang Customs Technology Center,Zhanjiang 524000,China;Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China)
出处
《中国腐蚀与防护学报》
CAS
CSCD
北大核心
2023年第5期983-991,共9页
Journal of Chinese Society For Corrosion and Protection
基金
广东能源集团科学技术研究院有限公司科技项目(STI-PY-21009)。
关键词
金属材料
腐蚀
预测模型
数据处理
电力设备
metallic material
corrosion
prediction model
data processing
electrical equipment