期刊文献+

求解大规模最小二乘问题的两种斜方向的Gauss-Seidel方法

TWO GAUSS-SEIDEL METHODS WITH OBLIQUE DIRECTION FOR SOLVING LARGE-SCALE LEAST SQUARES PROBLEMS
原文传递
导出
摘要 基于贪婪准则和最大距离准则选择系数矩阵工作列的策略,提出两种求解大规模超定不相容线性系统的斜方向的Gauss-Seidel方法,即斜方向的贪婪随机Gauss-Seidel(GRGSO)方法和斜方向的快速最大距离Gauss-Seidel(FMDGSO)方法.当系数矩阵是列满秩时,理论表明这些方法收敛到线性系统的唯一的最小二乘解。特别是当矩阵A的列接近线性相关时,数值结果表明这些方法在求解性能方面比传统的Gauss-Seidel型方法更具优势. Two Gauss-Seidel type methods with oblique direction for solving large-scale overdetermined inconsistent linear systems,namely,the greedy random Gauss-Seidel method with oblique direction(GRGSO)and the fast max-distance Gauss-Seidel method with oblique direction(FMDGSO),are proposed with the use of the strategy of selecting the working sequence of the coefficient matrix based on the greedy criterion and the max-distance criterion respectively.When the coefficient matrix is of full column rank,the theoretical results show that the two methods converge to the unique least square solution of the linear system.Particularly,when the columns of matrix A are close to linearly correlated,the numerical results show that the two methods have more advantages than the existing Gauss-Seidel method in solving performance.
作者 韦林香 李维国 王方 Wei Linxiang;Li Weiguo;Wang Fang(China University of Petroleum(UPC),Qingdao 266580,China)
出处 《数值计算与计算机应用》 2023年第3期252-271,共20页 Journal on Numerical Methods and Computer Applications
基金 国家重点研发计划(2019YFC1408400)资助.
关键词 Gauss-Seidel方法 斜方向 收敛性 线性最小二乘问题 Gauss-Seidel method Oblique direction Convergence property Large linear least-squares problems
  • 相关文献

参考文献3

二级参考文献1

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部