摘要
针对含运动学未知参数以及动力学模型不确定的非完整轮式移动机器人轨迹跟踪问题,基于Radical Basis Function(径向基函数)神经网络,提出了一种鲁棒自适应控制器.首先,考虑移动机器人运动学参数未知的情况,提出了一种含自适应参数的运动学控制器,用以补偿参数不确定性导致的系统误差;其次,利用神经网络控制技术,对于机器人在移动中动力学模型不确定问题,提出了一种具有鲁棒性的动力学控制器,使得移动机器人可以在不知道具体动力学模型的情况下跟踪到目标轨迹;最后利用Lyapunov稳定性理论证明了整个系统的稳定性.通过数值仿真验证了所设计的控制器的可行性.
Aiming at the trajectory tracking problem of nonholonomic wheeled mobile robots with unknown kinematic parameters and uncertain dynamic models,a robust adaptive controller is designed based on Radical Basis Function neural network.Firstly,considering the unknown kinematic parameters of the mobile robot,a kind of kinematic controller with adaptive parameters is proposed to compensate the system error caused by parameter uncertainty;Secondly,by using neural network control technology,a robust dynamic controller is put forward to solve the problem of uncertain dynamic model of the robot in motion,so that the mobile robot can track the target trajectory without knowing the specific dynamic model;Finally,the stability of the whole system is proved by using the Lyapunov stability theory.Simulation results demonstrate the effectiveness of the designed controller.
作者
沈智达
杨卫华
于晋伟
Shen Zhida;Yang Weihua;Yu Jinwei(College of Mathematics,Taiyuan University of Technology,Jinzhong030600,China)
出处
《动力学与控制学报》
2023年第7期89-96,共8页
Journal of Dynamics and Control
基金
山西省自然科学基金(20210302124546)。
关键词
轮式移动机器人
非完整系统
神经网络
鲁棒性
轨迹跟踪
Wheeled mobile robot
Nonholonomic system
Neural network
Robustness
trajectory tracking