期刊文献+

动力稳定作业参数对道床稳定性的影响

Effects of Dynamic Stabilization Operation Parameters on Ballast Stability
下载PDF
导出
摘要 为提高道床稳定性,采用离散元有限元耦合方法建立了动力稳定装置道床耦合模型。采用正交试验法,以动力稳定作业参数为研究对象,道床密实度和下沉量为评价指标,对作业参数进行了显著性与灵敏度分析。搭建了动力稳定装置试验台,验证了仿真模型的合理性。仿真和试验结果显示:动力稳定作业参数对道床稳定性的显著性影响关系为激振力幅值>激振频率>垂向下压力;动力稳定装置最优作业参数为激振频率35 Hz、激振力幅值197 kN。 To improve ballast stability,the dynamic stabilization unit-ballast coupling models were established using the discrete element-finite element coupling method.The orthogonal test method was used to analyze the significance and sensitivity of the operation parameters with the dynamic stabilization operation parameters as the research factors and the ballast compactness and settlement as the evaluation indexes.The dynamic stabilization unit test rig was built to verify the rationality of the simulation models.The simulation and experimental results show that the significant influences of dynamic stabilization operation parameters on ballasted are as follows:the effects of the amplitude of the excitation force are greater than that of the excitation frequency,and the effects of the excitation frequency are greater than that of the vertical downward pressure.The dynamic stabilization optimal operation parameters are as excitation frequency of 35 Hz and as excitation force amplitude of 197 kN.
作者 赵泽民 王立华 黄洪燚 陈太茂 蒋维 ZHAO Zemin;WANG Lihua;HUANG Hongyi;CHEN Taimao;JIANG Wei(Faculty of Mechanical and Electrical Engineering,Kunming University of Science and Technology,Kunming,650500)
出处 《中国机械工程》 EI CAS CSCD 北大核心 2023年第19期2313-2319,2369,共8页 China Mechanical Engineering
基金 国家自然科学基金(51765023)。
关键词 动力稳定作业 正交试验 道床稳定性 离散元有限元耦合法 dynamic stabilization operation orthogonal test ballast stability discrete element-finite element coupling method
  • 相关文献

参考文献3

二级参考文献25

  • 1中华人民共和国铁道部.TB/T2140-2008铁路碎石道砟[S].北京:中国铁道出版社,2008.
  • 2CUNDALL P A,STRACK O D L. A Discrete Numerical Model for Granular Assemblies[J]. Geotechnique, 1979,29 (1) :47-65.
  • 3TING J, KAHMOOD M, MEACHUM L, et al. An El- lipse-based Discrete Element Model for Granular Materials [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1993,17(9) : 603-623.
  • 4AURSUDKIJ B , MCDOWELL G R,COLLOP A C. Cyclic Loading of Railway Ballast under Triaxial Conditions and in a Railway Test Facility[J]. Granular Matter, 2009,11 (6) :391-404.
  • 5TUTUMLUER E, HUANG H, HASHASH Y. Aggre- gate Shape Effects on Ballast Tamping and Railroad Track Lateral Stability[C]//Proceedings of the AREMA Annual Conference. Louisville Kentucky.. Academic Press, 2006: 17-20.
  • 6INDRARATNA B, IONESCU D, CHRISTIE H D. Shear Behavior of Railway Ballast Based on Large-scale Triaxial Tests[J]. Journal of Geotechnical & Geoenviromental En- gineering,1998, 124 (5): 439-448.
  • 7GERALD P. Raymond Reinforced Ballast Behaviour Sub- jected to Repeated Load [J]. Geotextiles and Geomem- branes, 2002, 20(1): 39-61.
  • 8LU M, MCDWELL G R. The Importance of Modelling Ballast Particle Shape in the Discrete Element Method [J]. Granular Matter, 2007,9 (1-2) : 69-80.
  • 9INDRARATNA B. Behaviour of Fresh and Fouled Rail- way Ballast Subjected to Direct Shear Testing A Dis- crete Element Simulation[J]. International Journal of Ge- omechanics,2012,14(10) : 3-4.
  • 10INDRARATNA B, WIJEWARDENA L S S. Large-scale Triaxial Testing of Greywacke Rockfill[J]. Geotechnique, 1993,43(1) :37-51.

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部