摘要
为了解决大多数全卷积网络出现的特征提取单一、遥感图像变化检测(CD)能力差的问题,借助Unet++网络构建用于遥感图像CD的深度监督网络(DSNet).设计多尺度残差模块替换传统卷积层,通过融合孪生网络双分支上的空间与光谱特性,获取遥感图像在不同层次间的语义信息,有效解决了特征提取单一的问题.在模型解码端设计横向输出层,实现节点从低级向高级特征聚合的深度监督过程.将具备信息差异化的不同特征融合结果传输至基于归一化的注意力模块(NAM)中.在不引入额外参数的前提下增强了变化区域的信息权重.实验结果表明,所提模型在遥感图像CD任务中的召回率和精度分别为90.39%和92.04%,模型的参数量和计算量为6.38 M和60 G.与不同网络模型的对比表明,该方法具有检测精度高、速度快和轻量化等优点.
A deep supervised network(DSNet)for remote sensing image change detection(CD)was built with the Unet++to address the inadequate feature extraction and poor ability of remote sensing image CD in most fullly convolutional networks.A multi-scale residual module was designed to replace the conventional convolution layer.The problem of single feature extraction was resolved by combining the spatial and spectral properties of twin networks to obtain the semantic information of remote sensing images at various levels.The horizontal output layer of model was built to implement the deep supervision process of node feature aggregation from shallow to deep features at the decoding end of the model.The fusion results of different features with information differentiation were transmitted to the normalization-based attention module(NAM).The information weight of the changed region was enhanced without introducing additional parameters.Experimental results showed that the recall rate and accuracy of the proposed model in the remote sensing image CD task were 90.39%and 92.04%,respectively,and the parameter quantity and calculation quantity of the model were 6.38 M and 60 G.Comparise with different network models indicates that the proposed method has the advantages of high detection accuracy,fast speed and lightweight.
作者
袁小平
王小倩
何祥
胡杨明
YUAN Xiao-ping;WANG Xiao-qian;HE Xiang;HU Yang-ming(School of Information and Control Engineering,China University of Mining and Technology,Xuzhou 221116,China)
出处
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2023年第10期1966-1976,共11页
Journal of Zhejiang University:Engineering Science
基金
国家科技支撑计划资助项目(2013BAK06B08)
江苏省研究生科研与实践创新计划资助项目(SJCX20_0812).
关键词
图像分割
注意力模块
深度监督
横向输出层
轻量化
孪生网络
image segmentation
attention module
deep supervision
transverse output layer
lightweight
twin network