摘要
针对当前高压直流输电线路故障定位方法中存在的问题,提出一种基于S变换组合特征能量和改进一维卷积神经网络-门控循环单元混合神经网络模型的单端智能故障定位方法。首先,对直流输电线路故障电压、电流数据分别进行S变换,提取特征频率范围内的能量;然后归一化电压、电流特征能量并构成组合能量特征向量;最后将组合能量特征向量形成的数据集输入改进的一维卷积神经网络-门控循环单元模型进行训练和测试,实现故障定位。结果表明,该模型具有较高的定位精度和较好的鲁棒性。
Aimed at the problems existing in the fault location method for high voltage direct current(HVDC)transmis⁃sion lines,a single-ended intelligent fault location method based on the combined characteristic energy of S-transform and the improved one-dimensional convolutional neural network-gated recurrent unit(1D-CNN-GRU)hybrid neural net⁃work is proposed.First,the fault voltage and current data of HVDC transmission lines are S-transformed to extract the energy in the characteristic frequency range.Then,the voltage and current characteristic energy is normalized to form a combined energy eigenvector.Finally,the dataset formed by the combined energy eigenvector is fed into the improved 1D-CNN-GRU model for training and testing,thus achieving the fault location.Results show that the proposed model has a high location accuracy and a good robustness.
作者
杨玉萍
吴浩
田海鹏
陈伟哲
宋弘
YANG Yuping;WU Hao;TIAN Haipeng;CHEN Weizhe;SONG Hong(School of Automation and Information Engineering,Sichuan University of Science and Engineering,Zigong 643000,China;The Artificial Intelligence Key Laboratory of Sichuan Province,Zigong 643000,China;School of Automation and Information Engineering,Aba Teachers University,Aba 624000,China)
出处
《电力系统及其自动化学报》
CSCD
北大核心
2023年第9期120-129,共10页
Proceedings of the CSU-EPSA
基金
四川省科技厅资助项目(2020YFG0178,2021YFG0313,2022YFS0518,2022ZHCG0035)
人工智能四川省重点实验室资助项目(2019RYY01)
企业信息化与物联网测控技术四川省高校重点实验室资助项目(2018WZY01,2019WZY02,2020WZY02)
四川理工学院四川省院士(专家)工作站资助项目(2018YSGZZ04)
自贡市科技局资助项目(2019YYJC13,2019YYJC02,2020YGJC16)。
关键词
高压直流输电线路
S变换
组合特征能量
混合神经网络
单端故障定位
high voltage direct current(HVDC)transmission line
S-transform
combined characteristic energy
hy⁃brid neural network
single-ended fault location