期刊文献+

基于退化轨迹和Wiener模型的光伏组件剩余寿命预测方法

REMAINING LIFE PREDICTION METHOD OF PHOTOVOLTAIC MODULES BASED ON DEGRADATION TRAJECTORY AND WIENER MODEL
下载PDF
导出
摘要 针对光伏组件退化过程呈现的非单调、随机特性以及对组件剩余寿命自适应预测的需求,建立基于维纳(Wiener)过程的退化模型,在此基础上,提出一种结合退化轨迹自适应更新光伏组件剩余寿命的方法。首先,构建基于Wiener过程的光伏组件功率退化模型,刻画组件退化过程的非单调性以及组件退化过程的时间不确定性和个体差异性;然后,基于光伏组件的退化轨迹,联合贝叶斯更新和期望最大化(EM)算法对模型参数进行实时自适应更新,并在此基础上预测光伏组件的剩余寿命分布。最后,通过比较不同方法下光伏组件剩余寿命预测值的误差,验证所提方法的可行性与优越性。 To address the non-monotonic and stochastic characteristics of the PV module degradation process and the need for adaptive prediction of the remaining life of the module,a degradation model based on the Wiener process is established,on this basis,a method for adaptively updating the remaining life of PV modules in conjunction with the degradation trajectory is proposed.First,the PV module power degradation model based on the Wiener process is constructed to describe the non-monotonicity of the module degradation process,as well as the time uncertainty and individual differences of the module degradation process.Then,based on the degradation trajectory of the PV module,the Bayesian update and expectation maximization(EM)algorithm are combined to perform a real-time adaptive update of the model parameters,on this basis,the remaining life distribution of PV module is predicted.Finally,the feasibility and superiority of the proposed method are verified by comparing the errors of the remaining life prediction values of PV modules under different scenarios.
作者 陈伟 雷欢 裴婷婷 李旭斌 Chen Wei;Lei Huan;Pei Tingting;Li Xubin(College of Electrical and Information Engineering,Lanzhou University of Technology,Lanzhou 730050,China)
出处 《太阳能学报》 EI CAS CSCD 北大核心 2023年第7期175-181,共7页 Acta Energiae Solaris Sinica
基金 国家自然科学基金(51767017,51867015) 甘肃省基础研究创新群体项目(18JR3RA133)。
关键词 光伏组件 退化 失效 随机模型 剩余寿命 photovoltaic modules degradation failure stochastic model remaining life
  • 相关文献

参考文献8

二级参考文献79

  • 1曾声奎,Michael G.Pecht,吴际.故障预测与健康管理(PHM)技术的现状与发展[J].航空学报,2005,26(5):626-632. 被引量:279
  • 2张文霖.主成分分析在满意度权重确定中的应用[J].市场研究,2006(6):18-22. 被引量:73
  • 3邓爱民,陈循,张春华,汪亚顺.基于性能退化数据的可靠性评估[J].宇航学报,2006,27(3):546-552. 被引量:133
  • 4杨林华,范宁.太阳电池紫外加速寿命试验技术研究[J].光学技术,2007,33(1):89-91. 被引量:8
  • 5LIU D T, ZHOU J B, PENG Y. Data-driven prognostics and remaining useful life estimation for lithiumion battery: A review[ J 1. Instrumentation, 2014,1 ( 1 ) :59-70.
  • 6NELSON W. Analysis of performance degradation data from accelerated tests [ J ]. IEEE Transactions on Relia- bility, 1981, 30(2):149-150.
  • 7WANG L, LIU Z W, JINX B, et al. Reliability estima- tion based on the degradation amount distribution using c- omposite time series analysis and grey theory [ J ]. Cy- bern- etics and Information Technologies ,2013,13 (3) :3- 14.
  • 8OLEA R A. On the use of the beta distribution in proba- bili- stic resource assessment [ J]. Natural Resources Re- search, 2011, 20(4) :377-388.
  • 9LAURENCIN N C, COTOFANA S D. A nonlinear degra- dation path dependent end-of-life estimation framework from noisy observations[ J ]. Microelectronics Reliability, 2013,53(9) : 1213-1217.
  • 10CHEN Z H,ZHENG SH R.Lifetime distributionbased degradationanalysis [J].IEEE Transactionson Reliability,2005,54(1):3-10.

共引文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部