摘要
This paper aims to investigate the torque production mechanism and its improvement design in switched reluctance machines(SRMs) based on field modulation principle. Firstly, the analytical expressions of the air-gap magnetic field are derived from the perspective of DC-and AC-components, respectively. Meanwhile, different slot/pole combinations and winding arrangements are considered. Secondly, the torque productions are analyzed and evaluated with emphasis on the interaction between the DCand AC-components of air-gap fields. Thirdly, the 12-slot/8-pole and 12-slot/10-pole SRMs are established and studied by using the finite-element method. The effects of slot/pole combination and winding arrangement on the average torque production are clarified. Then, two new designs to improve the average torque are proposed. Finally, the prototype of the 12-slot/10-pole SRM is manufactured, and the experiments are carried out for validation.
基金
supported by the National Natural Science Foundation of China(Grant No.52025073)
the Postgraduate Research & Practice Innovation Program of Jiangsu Province(Grant No.KYCX21_3358)。