期刊文献+

基于Openstack与Hadoop的实验教学大数据系统应用研究

Research on the Application of Experimental Teaching Big Data System Based on Openstack and Hadoop
下载PDF
导出
摘要 针对高校实验教学普遍存在的问题,提出构建基于OpenStack与Hadoop技术的在线实验教学大数据系统,融合Swift和HDFS技术,优化数据处理,整合分散的教学资源,提高学生自主学习的效率。根据实验教学需求灵活配置虚拟机,搭建Hadoop、Spark、Hive等各种大数据实验镜像环境。实现了教学资源的统一管理,各项应用的快速部署,以及大数据的采集和存储。系统经测试可稳定运行,满足教学、管理等需求,亦可应用于大数据计算、云计算等科研领域。 In view of the common problems in experimental teaching in colleges and universities,it is proposed to build an online experimental teaching big data system based on OpenStack and Hadoop technology,integrate Swift and HDFS technology,and optimize data processing.Integrate scattered teaching resources and improve the efficiency of students'autonomous learning.Configure virtual machines flexibly according to the needs of experimental teaching,and build Hadoop,Spark,Hive and other big data experimental image environments.It realizes the unified management of teaching resources,the rapid deployment of various applications,and the collection and storage of big data.After testing,the system can run stably,meet the needs of teaching and management,and can also be applied to scientific research field such as big data computing and cloud computing.
作者 齐连众 张小凤 QI Lianzhong;ZHANG Xiaofeng(Beijing Institute of Technology,Zhuhai,Zhuhai 519088,China;School of Statistics,University of International Business and Economics,Beijing 100029,China)
出处 《现代信息科技》 2023年第17期131-135,共5页 Modern Information Technology
基金 广东高校省级重点平台和重大科研项目(2021GXJK425) 广东省教育科学规划课题(高等教育专项)(2021GXJK434)。
关键词 大数据应用 OPENSTACK HADOOP 实验教学 big data application OpenStack Hadoop experimental teaching
  • 相关文献

参考文献7

二级参考文献37

  • 1陈佳音.从物联网到脑联网——浅析计算机网络技术的发展方向[J].轻工科技,2020(12):42-43. 被引量:7
  • 2陆嘉恒.Hadoop实战[M].北京:机械工业出版社,2012.
  • 3Shvaehko Konstantin. The Hadoop distributed file system[ C ]//Mass Storage Systems and Technologies (MSST) , 2010,26th Symposium on IEEE:1-10.
  • 4Dean J, Ghemawat S. MapReduce: simphfied data processing on large clusters[J]. Communications of the ACM, 2008, 51 ( 1 ) : 107- 113.
  • 5Dean J, Ghemawat S. MapReduce: a flexible data processing tool [J]. Communications of the ACM, 2010, 53(1): 72-77.
  • 6Karau H. Fast Data Processing With Spark [ M ]. Bermingham:Packt Publishing Ltd, 2013.
  • 7Zaharia M, Chowdhury M, Das T, et al. Fast and interactive analyties over Hadoop data with Spark[J]. USENIX; login, 2012, 37(4) : 45-51.
  • 8OpenSSL官网.http://www.openssh.com/.2012.
  • 9Owen S, Anil R, Dunning T, et al. Mahout in action [ M ]. New York : Manning Publications Co,2011.
  • 10Giacomelli P. Apache Mahout Cookbook [ M ]. Bermingham:Packt Publishing Ltd, 2013.

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部