摘要
Organic and carbon-based lithium-ion batteries possess abundant resources,nontoxicity,environmental friendliness,and high performance,and they have been widely studied in the past decades.However,it remains a challenge to construct such batteries with high capacity,high cycling stability,and high conductivity simultaneously.Here,we elaborately design and integrate organic polymer(p-FcPZ) with graphene network to create a hybrid material(p-FcPZ@G) for high-performance lithium-ion batteries(LIBs).The bi-polar polymer p-FcPZ containing multiple redox-active sites endows p-FcPZ@G with both remarkable cycling stability and high capacity.The porous conductive graphene network with a large surface area facilitates rapid ions/electrons transportation,resulting in superior rate performance.Therefore,the half-cell based on p-FcPZ@G cathode exhibits simultaneously high capacity(~250 mA h g^(-1) at 50 mA g^(-1)),excellent cycling stability(retention of 99.999% per cycle for 10,000 cycles at 2,000 mA g^(-1)) and superior rate performance.Additionally,the graphene-based full cell assembled with p-FcPZ@G cathode and graphene anode also demonstrates comprehensively high electrochemical performance.
基金
supported by the National Natural Science Foundation of China (52090034)
the Ministry of Science and Technology of China (2020YFA0711500)
the Higher Education Discipline Innovation Project (B12015)。