期刊文献+

High-performance lithium-ion batteries based on polymer/graphene hybrid cathode material

原文传递
导出
摘要 Organic and carbon-based lithium-ion batteries possess abundant resources,nontoxicity,environmental friendliness,and high performance,and they have been widely studied in the past decades.However,it remains a challenge to construct such batteries with high capacity,high cycling stability,and high conductivity simultaneously.Here,we elaborately design and integrate organic polymer(p-FcPZ) with graphene network to create a hybrid material(p-FcPZ@G) for high-performance lithium-ion batteries(LIBs).The bi-polar polymer p-FcPZ containing multiple redox-active sites endows p-FcPZ@G with both remarkable cycling stability and high capacity.The porous conductive graphene network with a large surface area facilitates rapid ions/electrons transportation,resulting in superior rate performance.Therefore,the half-cell based on p-FcPZ@G cathode exhibits simultaneously high capacity(~250 mA h g^(-1) at 50 mA g^(-1)),excellent cycling stability(retention of 99.999% per cycle for 10,000 cycles at 2,000 mA g^(-1)) and superior rate performance.Additionally,the graphene-based full cell assembled with p-FcPZ@G cathode and graphene anode also demonstrates comprehensively high electrochemical performance.
出处 《Science China Chemistry》 SCIE EI CAS CSCD 2023年第9期2683-2689,共7页 中国科学(化学英文版)
基金 supported by the National Natural Science Foundation of China (52090034) the Ministry of Science and Technology of China (2020YFA0711500) the Higher Education Discipline Innovation Project (B12015)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部