期刊文献+

面向实时财经信息的领域情感歧义搭配词典构建研究 被引量:1

Domain Ambiguous Collocation Dictionary for Real-Time Financial Sentimental Analysis
原文传递
导出
摘要 【目的】针对由于忽略歧义词的动态极性而导致情感分析有误的问题,有效识别具有经济学特征的情感歧义词并提取其搭配词,解决该领域歧义词适配性问题。【方法】以动态财经新闻信息为研究对象,计算短语中词汇正负情感值以识别提取歧义种子词,通过关联规则、点互信息等算法挖掘其强相关搭配词,标注搭配词对情感极性后构建歧义搭配词典,从动态维度对实时更新的新闻文本进行情感挖掘测评。【结果】实证结果表明,加入歧义搭配词典后对财经信息文本情感分析的准确率为89.62%,召回率为87.52%,F1值为88.57%,较未加入歧义搭配词典分别提高5.79、15.89和10.84个百分点。【局限】在利用情感歧义搭配词典进行文本情感挖掘过程中,存在设置种子词与其搭配词检索字符间隔较远而未被有效识别的情况。【结论】本文构建的歧义搭配词典有效扩充了经济学领域情感词典,在细粒度和深度上对领域情感词典进行完善及优化,显著提升了领域文本情感挖掘的准确性。 [Objective]This study tries to address the problem of inaccurate sentiment analysis due to ignoring the dynamic polarity in ambiguous words.It aims to effectively identify sentiment-ambiguous words with economic characteristics and their collocations.[Methods]The study takes dynamic financial news information as the research object.First,we calculated the positive and negative sentiment scores of words in phrases to extract ambiguous seed words.Then,we retrieved their strongly related collocations with algorithms such as association rules and PMI.Third,we labeled the sentiment polarity of collocation pairs to build an ambiguous collocation lexicon.Finally,we measured the performance of sentiment mining on real-time updated news texts from a dynamic perspective.[Results]The accuracy,recall,and F-value of the sentiment analysis of the financial information text were 89.62%,87.52%,and 88.57%,respectively,which were 5.79%,15.89%,and 10.84%higher than the traditional models.[Limitations]Some collocation words cannot be identified due to their significant distance from the seed words.[Conclusions]The ambiguous collocation dictionary constructed in this paper effectively expands the sentiment lexicon in economics.It optimizes the lexicon in granularity and depth,significantly improving sentiment analysis accuracy.
作者 赵又霖 徐竟楠 陆颖隽 Zhao Youlin;Xu Jingnan;Lu Yingjun(Business School,Hohai University,Nanjing 211100,China;School of Information Management,Nanjing University,Nanjing 210023,China;School of Information Management,Wuhan University,Wuhan 430072,China)
出处 《数据分析与知识发现》 CSCD 北大核心 2023年第7期100-110,共11页 Data Analysis and Knowledge Discovery
基金 国家社会科学基金一般项目(项目编号:21BTQ055)的研究成果之一。
关键词 财经信息 歧义搭配词典 关联规则 情感词典 Financial Information Ambiguous Collocation Dictionary Association Rules Emotional Lexicon
  • 相关文献

参考文献13

二级参考文献133

共引文献563

同被引文献19

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部