期刊文献+

微手系统的鲁棒无源跟踪控制

Robust passive tracking control for micro-hand system
下载PDF
导出
摘要 近年来,微手系统作为机器人技术的一个热门研究领域,受到了越来越多的关注.由于微手系统是复杂且具有非线性的,因此在实际应用当中很难达到精确跟踪的性能.为了解决微手系统的精准控制问题,本文讨论了微手系统的鲁棒无源跟踪控制.首先,运用基于演算子理论的鲁棒右互质分解方法,建立了微手系统的动态模型.然后,通过结合无源补偿算子,设计了无源鲁棒控制器,保证了系统的鲁棒稳定性和无源性.进而提出了基于双Bezout恒等式的鲁棒跟踪控制方案,使整个非线性系统具有较强的鲁棒性和良好的跟踪性能.最后,通过仿真进一步验证了所提出方法的有效性. In recent years,as a hot research topic in the field of robotics,the research of the micro-hand system has gained more and more attention.Since the micro-hand system is complex with nonlinearity,it is difficult to realize the accurate tracking performance for some real applications.Therefore,in order to solve the accurate control problem of the micro-hand system,the robust passive tracking control for the micro-hand system is studied in this paper.Firstly,using the operator-based robust right coprime factorization method,a dynamic model of the micro-hand system is established.Secondly,combined with the passive compensator,the passive robust controller is designed to ensure robust stability and passivity of the system.Thirdly,the robust tracking control scheme based on dual Bezout identity is proposed,which makes the whole nonlinear systems hold robustness and perfect tracking performance.Finally,the effectiveness of the proposed method is further verified by the simulation.
作者 步妮 李小永 张玉义 BU Ni;LI Xiao-yong;ZHANG Yu-yi(College of Automation and Electronic Engineering,Qingdao University of Science and Technology,Qingdao Shandong 266061,China)
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2023年第9期1620-1626,共7页 Control Theory & Applications
基金 Supported by the National Key Research and Development Program of China(2018AAA0100804) the National Natural Science Foundation of China(61304093) the Natural Science Foundation of Shandong,China(ZR2021MF047).
关键词 鲁棒控制 非线性系统 无源性 Bezout恒等式 鲁棒跟踪控制 robust control nonlinear system passivity Bezout identity robust tracking control
  • 相关文献

参考文献2

二级参考文献17

  • 1SMITH R C. Smart Material System: Model Development[M]. Philadelphia: Frontiers Siam in Applied Mathematics, 2005.
  • 2NEALIS J, SMITH R C. Model-based robust control design for magnetostrictive transducers operating in hysteretic and nonlinear regimes[J]. IEEE Transactions on Control Systems Technology, 2007, 15(1): 22 - 39.
  • 3TAO G, KOKOTOVIC P V. Adaptive control of plants with unknown hysteresis[J]. IEEE Transactions on Automatic Control, 1995, 40(2): 200 - 212.
  • 4MAYERGOYZ I D. Mathematical Models of Hysteresis[M]. New York: Springer-Verlag, 1991.
  • 5KRASONSEL'SKII M A, POKROVSKII A V. Systems with Hysteresis[M]. New York: Springer-Verlag, 1989.
  • 6VISINTIN A. Differential Models of Hysteresis[M]. New York: Spdnger-Verlag, 1994.
  • 7BROKATE M, SPREKELS J. Hysteresis and Phase Transitions[M]. Berlin, Germany: Springer-Verlag, 1996.
  • 8SU C Y, STEPANENKO Y, SVOBODA J, et al. Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis[J]. IEEE Transactions on Automatic Control, 2000, 45(12): 2427 - 2432.
  • 9TAN X, BARAS J S. Modeling and control of hysteresis in magnestrictive actuators[J]. Automatica, 2004, 40(9): 1469 - 1480.
  • 10WANG Q, SU C Y. Robust adaptive control of a class of nonlinear systems including actuator hysteresis with Prandtl-Ishlinskii presentations[J]. Automatica, 2006, 42(5): 859 - 867.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部