摘要
Surface oxygen vacancies(OVs) with abundant localized electrons on bismuth-oxygen based photocatalysts are proved to have the ability to capture and activate CO_(2).However,the surface OVs are easily filled with oxygen-containing species and destroyed,losing their effects as active sites and hindering the subsequent CO_(2)photoreduction.For realistic and sustainable CO_(2)photoreduction,constructing sustainable and stable surface OVs as active sites on photocatalysts is essential.This work shows the synthesis of interlayer stretched Bi_(2)O_(2)CO_(3) ultrathin nanosheets with tensile stress,which are beneficial to continuously generating light-induced dynamic OVs.With sufficient active sites,excellent,stable,and selective photoreduction of CO_(2)to CO under simulated solar light is achieved.The light-induced OVs can reduce the energy barrier of rate-determining step,resulting in the 100% product selectivity.The results presented herein demonstrate the effect of dynamic OVs induced by interlayer tensile strain on catalysts for the enhanced selective CO_(2)photoreduction process.
基金
supported by the National Natural Science Foundation of China (52200123, 22225606, 22261142663)。