期刊文献+

Engineering versatile Au-based catalysts for solar-to-fuel conversion

下载PDF
导出
摘要 Gold(Au) nanostructures(NSs) have been widely employed as cocatalysts to improve the photoactivity of semiconductor materials, while a systematic summary of the engineering approaches of Au NSs to maximize the solar-to-fuel conversion efficiency is still lacking. In this review, the recently developed strategies for elevating the overall photocatalytic performance of Au-based catalysts and the deep physical chemistry mechanisms are highlighted. Firstly, the synthetic approaches of Au NSs are summarized, followed by an elaboration on their multiple functions in improving photoactivity. Afterward, modification strategies of Au NSs used to enhance the photocatalytic efficiency of Au-semiconductor composites,including controlling the Au NSs morphology, size, crystal phase, defect engineering, alloying with different metals, modulating interfacial interaction, and introducing an external field, are summarized and discussed independently. Additionally, advanced characterization techniques that can provide insights into the charge dynamics of the photocatalysts are introduced. Finally, we share our opinion on the challenges and outline potentially promising opportunities and directions for efficient Au-based photocatalysis research moving forward. We sincerely look forward to this review can deliver insightful views to design efficient Au-based photocatalysts and spur certain innovations to other metal-based catalysts.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期341-362,I0010,共23页 能源化学(英文版)
基金 financially supported by the National Natural Science Foundation of China (21902132) the Research Foundation-Flanders (1280021N, 1242922N, 1298323N)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部