期刊文献+

Dual role of lipids for genome stability and pluripotency facilitates full potency of mouse embryonic stem cells

原文传递
导出
摘要 While Mek1/2 and Gsk3βinhibition("2i")supports the maintenance of murine embryonic stem cells(EsCs)in a homogenous naive state,prolonged culture in 2i results in aneuploidy and DNA hypomethylation that impairs developmental potential.Additionally,2i fails to support derivation and culture of fully potent female ESCs.Here we find that mouse ESCs cultured in 2i/LIF supplemented with lipid-rich albumin(AlbuMAx)undergo pluripotency transition yet maintain genomic stability and full potency over long-term culture.Mechanisticaily,lipids in AlbuMAx impact intracellular metabolism including nucleotide biosynthesis,lipid biogenesis,and TCA cycle intermediates,with enhanced expression of DNMT3s that prevent DNA hypomethylation.Lipids induce a formative-like pluripotent state through direct stimulation of Erk2 phosphorylation,which also alleviates X chromosome loss in female ESCs.Importantly,both male and female"all-ESc"mice can be generated from de novo derived ESCs using AlbuMAXbased media.Our findings underscore the importance of lipids to pluripotency and link nutrient cues to genome integrity in early development.
出处 《Protein & Cell》 SCIE CSCD 2023年第8期591-602,共12页 蛋白质与细胞(英文版)
基金 supported by the New York State Stem Cell Science Program under contract C32581GG the National Institutes of Health under award numbers:1 R01 GM129380-01 and 1R210OD031973-01 (to D.W.).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部