期刊文献+

Design and analysis of a novel dual source vapor injection heat pump using exhaust and ambient air

原文传递
导出
摘要 A novel dual source vapor injection heat pump(DSVIHP)using exhaust and ambient air is proposed.The air exhausted from the building first releases energy to the medium-pressure evaporator and is then mixed with the ambient air to heat the low-pressure evaporator.A vapor injection(VI)compressor of two inlets is connected with the low and medium pressure evaporators.It’s first time that a VI compressor is employed to recover the ventilation heat.The system can minimize the ventilation heat loss and provide a unique defrosting approach by using the exhaust waste heat.Fundamentals of the proposed DSVIHP are illustrated.Mathematical models are built.Both energetic and exergetic analyses are carried out under variable conditions.The results indicate that the DSVIHP has superior thermodynamic performance.The superiority is more appreciable at a lower ambient temperature.It has a higher COP than the conventional vapor injection heat pump and air source heat pump by 11.3%and 23.2%respectively at an ambient temperature of-10°C and condensation temperature of 45°C.The waste heat recovery ratio from the exhaust air is more than 100%.The novel DSVIHP has great potential in the cold climate area application.
出处 《Energy and Built Environment》 2022年第1期95-104,共10页 能源与人工环境(英文)
基金 This work is funded by the UK BEIS project‘A low carbon heating system for existing public buildings employing a highly innovative multiple-throughout-flowing micro-channel solar-panel-array and a novel mixed indoor/outdoor air source heat pump’(LCHTIF1010).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部