摘要
基于铬黑T与铕离子构建了比色和荧光双通道探针(EBT/Eu^(3+)),利用智能手机颜色识别和荧光测试获得四种四环素加入EBT/Eu^(3+)后颜色和荧光信号的变化,结合机器学习中模式识别方法,成功实现了蜂蜜中四种四环素的识别。本实验将探针制备、智能手机颜色获取、荧光测试、机器学习、多种抗生素识别等多个知识点进行创新融合,综合性强。
In this study,a method for identifying residual antibiotics in food was developed based on chromium black T and europium ion as colorimetric and fluorescent probes(EBT/Eu^(3+))coupled with pattern recognition in machine learning.The changes in color and fluorescence of four antibiotics with the addition of EBT/Eu^(3+)were obtained using smart phone and fluorescence measurements.Assisted by pattern recognition,the four antibiotics in honey were successfully identified.This experiment is highly comprehensive;it integrates multiple knowledge points,such as two-channel probe preparation,color recognition based on smart phone,fluorescence measurements,machine learning,and identification of various antibiotics.
作者
邓松泉
龚琪
唐艳秋
王楠
陈芳
朱丽华
王靖宇
王宏
Songquan Deng;Qi Gong;Yanqiu Tang;Nan Wang;Fang Cheng;Lihua Zhu;Jingyu Wang;Hong Wang(School of Chemistry and Chemical Engineering,Huazhong University of Science and Technology,Wuhan 430074,China)
出处
《大学化学》
CAS
2023年第8期177-185,共9页
University Chemistry
基金
华中科技大学教学研究项目(2021109)。
关键词
铬黑T
铕离子
比色荧光探针
模式识别
抗生素
Chromium black T
Europium ion
Colorimetric and fluorescent probe
Pattern recognition
Antibiotics