摘要
森林资源监测的数字化和智能化是未来发展的主要趋势。基于高分辨率航空、多光谱遥感数据和数字地表模型(DSM)等数据,利用计算机深度学习方法,研究乔木林小班的郁闭度、平均树高、总株数3项主要林分调查因子的数字化智能提取方法。结果表明,郁闭度判读的平均准确率可达到98.6%;平均树高判读的平均准确率可达到90%;株数判读的平均准确率可达到82.36%。
The digitization and intelligence of forest resource monitoring is the main trend in future development.Based on high-resolution aerial,multispectral remote sensing data,and digital surface model(DSM)data,this paper studied the digital intelligent extraction method for three main forest stand survey factors,namely canopy density,average tree height,and total plant number,in the subcompartment of arboreal forest by using computer deep learning.The results showed that the average accuracy of canopy density interpretation reached 98.6%;the average accuracy of average tree height interpretation reached 90%;the average accuracy of plant number interpretation reached 82.36%.
作者
李琦
辛亮
孟陈
LI Qi;XIN Liang;MENG Chen(Shanghai Forestry Station,Shanghai 200072,China;Shanghai Surveying and Mapping Institute,Shanghai 200063,China;Jingyao(Shanghai)Information Technology Co.,Ltd.,Shanghai 201109,China)
出处
《林业调查规划》
2023年第4期24-27,共4页
Forest Inventory and Planning
基金
上海市绿化和市容管理局科学技术项目(G201209).
关键词
智能识别技术
高分辨率航空遥感影像
林分调查因子
自动判读
intelligent identification technology
high-resolution aerial remote sensing images
forest stand survey factors
automatic interpretation