期刊文献+

基于高分辨率航空遥感影像的林分因子智能识别技术研究

Intelligent Recognition Technology of Forest Stand Factors Based on High-resolution Aerial Remote Sensing Images
下载PDF
导出
摘要 森林资源监测的数字化和智能化是未来发展的主要趋势。基于高分辨率航空、多光谱遥感数据和数字地表模型(DSM)等数据,利用计算机深度学习方法,研究乔木林小班的郁闭度、平均树高、总株数3项主要林分调查因子的数字化智能提取方法。结果表明,郁闭度判读的平均准确率可达到98.6%;平均树高判读的平均准确率可达到90%;株数判读的平均准确率可达到82.36%。 The digitization and intelligence of forest resource monitoring is the main trend in future development.Based on high-resolution aerial,multispectral remote sensing data,and digital surface model(DSM)data,this paper studied the digital intelligent extraction method for three main forest stand survey factors,namely canopy density,average tree height,and total plant number,in the subcompartment of arboreal forest by using computer deep learning.The results showed that the average accuracy of canopy density interpretation reached 98.6%;the average accuracy of average tree height interpretation reached 90%;the average accuracy of plant number interpretation reached 82.36%.
作者 李琦 辛亮 孟陈 LI Qi;XIN Liang;MENG Chen(Shanghai Forestry Station,Shanghai 200072,China;Shanghai Surveying and Mapping Institute,Shanghai 200063,China;Jingyao(Shanghai)Information Technology Co.,Ltd.,Shanghai 201109,China)
出处 《林业调查规划》 2023年第4期24-27,共4页 Forest Inventory and Planning
基金 上海市绿化和市容管理局科学技术项目(G201209).
关键词 智能识别技术 高分辨率航空遥感影像 林分调查因子 自动判读 intelligent identification technology high-resolution aerial remote sensing images forest stand survey factors automatic interpretation
  • 相关文献

参考文献9

二级参考文献138

共引文献221

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部