期刊文献+

基于RFNA和改进LBD的镜像线特征匹配方法

Line Segment Matching Based on RFNA and Improved LBD of Mirror Image
下载PDF
导出
摘要 针对物体和镜像之间的匹配问题,引入RNFA(Relative Number of False Alarms)边缘链检测方法获取更丰富的线段。文中提出一种改进的LBD(Line Band Descriptor)算法用于构建局部不变特征描述符,通过比较局部不变特征描述符获得初始匹配对。采用全局投影角度的筛选方式,并通过拟合投影中线的方式剔除初始匹配对中误匹配项。在完成全局投影角度的选取和投影中线的拟合后,放宽对局部不变特征描述符阈值的筛选以获得更多的匹配对,提升召回率。图像集仿真实验结果表明,文中所提算法在纹理较弱区域能够更好地识别线段,且能够在保证原算法性能的基础上获得更多的匹配对,提高5%左右的正确匹配率,并达到90%以上的召回率。 In view of the matching problem between objects and mirrors in images,the RNFA(Relative Number of False Alarms)edge chain detection method is introduced to obtain richer line segments.An improved LBD(Line Band Descriptor)algorithm is proposed for constructing local invariant feature descriptors,and initial matching pairs are obtained by comparing local invariant feature descriptors.The screening of the global projection angle is adopted and the false matches in the initial matching pairs are eliminated fitting the projection center line.After the selection of the global projection angle and the fitting of the projection median are completed,the screening of the local invariant feature descriptor threshold is relaxed to obtain more matching pairs and improve the recall rate.The experimental results of image set simulation show that the designed algorithm can better identify line segments in the weaker texture regions and obtain more matching pairs on the basis of the guaranteed performance of the original algorithm,which can improve the correct matching rate by about 5%and achieve a recall rate of over 90%.
作者 高于科 章伟 胡陟 江鹏伟 GAO Yuke;ZHANG Wei;HU Zhi;JIANG Pengwei(Laboratory of Intelligent Control and Robotics,Shanghai University of Engineering Science,Shanghai 200093,China)
出处 《电子科技》 2023年第10期32-38,共7页 Electronic Science and Technology
基金 国家自然科学基金(62003207)。
关键词 边缘链检测 RNFA 局部不变特征描述符 改进LBD 线特征匹配 镜像 图像金字塔 特征提取 edge chain detection RNFA local invariant feature descriptor improved LBD line segment matching mirror image pyramid feature extraction
  • 相关文献

参考文献3

二级参考文献30

共引文献115

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部