期刊文献+

驾驶行为参数与动力电池电压的相关性分析

Correlation Analysis Between Driving Behavior Parameters and Power Battery Voltage
下载PDF
导出
摘要 本文对驾驶行为参数与动力电池电压的相关性研究进展进行了阐述,采用镍钴锰酸锂电池作为动力源的车型设计了驾驶实验,通过车联网系统、高级驾驶辅助系统和三轴陀螺仪等设备获取各类参数,利用皮尔逊相关系数法分析了驾驶行为参数与动力电池电压的相关性,结果表明:电池SOC与电池总电压呈极强相关性;加速踏板行程、总电流、车速与电池总电压呈强相关性;加速度、制动踏板行程与电池总电压呈中度相关性,环境温度与电池总电压呈极弱相关性。通过相关性分析结果,确定了与电池组电压相关的驾驶行为、动力电池特征指标。 This article describes the progress in research on the correlation between driving behavior parameters and power battery voltage.A driving experiment was designed for a vehicle model using nickel cobalt lithium manganate batteries as the power source.Various parameters were obtained through the Internet of Vehicles system,advanced driving assistance system,and three-axis gyroscope.The Pearson correlation coefficient method was used to analyze the correlation between driving behavior parameters and power battery voltage,The results show that there is a strong correlation between battery SOC and total battery voltage;Accelerator pedal travel,total current,and vehicle speed are strongly correlated with the total battery voltage;Acceleration,brake pedal travel,and total battery voltage have a moderate correlation,while ambient temperature has a very weak correlation with total battery voltage.Based on the correlation analysis results,the driving behavior and power battery characteristic indicators related to the battery pack voltage were determined.
作者 杨家印 Yang Jia-yin(Jiangsu Union Technical Institute,Jiangsu Xuzhou 221004,China)
出处 《内燃机与配件》 2023年第18期17-19,共3页 Internal Combustion Engine & Parts
关键词 电动汽车 动力电池 驾驶行为 相关性 Electric vehicle Power battery Driving behavior Relevance
  • 相关文献

参考文献4

二级参考文献21

  • 1冯丽沙.基于CAN总线电动汽车数据采集系统研究[J].中国设备工程,2019,0(24):193-194. 被引量:2
  • 2宗长富,杨肖,王畅,张广才.汽车转向时驾驶员驾驶意图辨识与行为预测[J].吉林大学学报(工学版),2009,39(S1):27-32. 被引量:26
  • 3杨洪,韩胜风,陈小鸿.Vissim仿真软件模型参数标定与应用[J].城市交通,2006,4(6):22-25. 被引量:54
  • 4Dowling R, Skabardonis A, Halkias J, et al. Guidelines for calibration of microsimulation mod- els: framework and applications. Transpor-tation Research Record, 2004,1 876:1-9
  • 5TSS. AIMSUN 5.0 Microsimulator User's Ma-nual. Transportation Simulation Systems, 2005
  • 6Pindyck R S, Rubinfeld D L. Econometric Models and Economic Forecasts. 4thed. New York: Mc-Graw-Hill, 1998
  • 7Wang J S,Knipling R R. Lane change/merge:problem size assessment and statistical description[R]. Wash- ington DC: National Highway Traffic Safety Adminis-tration, 1993.
  • 8National Transportation Safety Board. Special investi- gation report vehicle and infrastructure-based tech- nology for the prevention of rear-end collisions[R]. Washington DC: National Transportation Safety Board, 2001.
  • 9Kuge N, Yamamura T, Shimoyama O, et al. A driver behavior recognition method based on a driver model framework[J]. SAE Paper 2000-01-0349.
  • 10Liu A, Pentland A P. Towards real-time recognition of driver intentions[C]//IEEE. Proceedings of IEEE Conference on Intelligent Transportation Systems 1997. Boston:IEEE,1997:236-241.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部