期刊文献+

一类随机SICR丙肝模型的动力学分析 被引量:1

Dynamic Analysis of an SICR Hepatitis C Infection Model with Stochastic Effects
下载PDF
导出
摘要 为了研究现实中不确定因素对丙肝的影响,考虑了一类具有急性与慢性感染的随机SICR丙肝模型。首先,依据停时理论证明了全局正解的存在唯一性;其次,通过构造Lyapunov函数并结合伊藤公式,讨论了随机模型的解在确定模型的无病平衡点和正平衡点附近的振荡行为,并给出了随机模型解的平均持续和疾病灭绝的充分条件。最后,数值模拟考虑了噪声对模型的影响,结果表明:随机模型在确定模型的平衡点附近扰动,扰动强度与噪声强度成正相关,并且足够大的噪声使疾病灭绝,进一步证实了理论结果。 In order to study the influence of uncertain factors on hepatitis C in reality,a randomized SICR hepatitis C model with acute and chronic infection was considered.Firstly,the existence and uniqueness of global positive solutions are proved according to the stopping time theory;secondly,by constructing Lyapunov function and combining Ito formula,the oscillation behavior of the solution of the stochastic model near the disease-free equilibrium point and the positive equilibrium point of the model is discussed,and then the sufficient conditions for the average persistence and disease extinction of the solution of the stochastic model are given.Finally,the numerical simulation considers the influence of noise on the model.The results show that the stochastic model is disturbed near the equilibrium point of the determined model,and the disturbance intensity is positively correlated with the noise intensity.Moreover,the noise is large enough to make the disease extinct,which further confirms the theoretical results.
作者 康玉娇 张太雷 马怡婷 KANG Yujiao;ZHANG Tailei;MA Yiting(School of Science,Chang′an University,Xi′an 710064,China)
机构地区 长安大学理学院
出处 《哈尔滨理工大学学报》 CAS 北大核心 2023年第3期129-139,共11页 Journal of Harbin University of Science and Technology
基金 陕西省自然科学基础研究计划(2022JM-023)。
关键词 随机模型 平衡点 振荡行为 伊藤公式 疾病持续与灭绝 stochastic model equilibrium point oscillatory behavior Ito formula disease persistence and extinction
  • 相关文献

参考文献7

二级参考文献29

  • 1刘雪松.丙型肝炎防治指南[J].中华医学杂志,2004,84(9):775-780. 被引量:64
  • 2先灵葆雅丙肝药SCH 503034获美国FDA快速审批[J].制药原料及中间体信息,2006(3):41-41. 被引量:1
  • 3陆征一,周义仓. 生物数学进展[M].北京: 科学出版社,2006.
  • 4Gumel A B,McCluskey C C,van den Driessche P.Mathematical study of a staged-progression HIV model with imperfect vaccine[J].Bulletin of Mathematical Biology,2006,68(8):2105-2128.
  • 5Shan C H,Zhu H P.Bifurcations and complex dynamics of an SIR model with the impact of the number of hospital beds[J].Journal of Differential Equations,2014,257(5):1662-1688.
  • 6Kermack W O,Mckendrick A G.A contribution to the mathematical theory of epidemics[J].Proceedings of the Royal Society of London,1927,115(772):700-721.
  • 7Liu X Z,Stechlinski P.SIS models with switching and pulse control[J].Applied Mathematics and Computation,2014,232:727-742.
  • 8Busenberg S,Cooke K L.The effect of integral conditions in certain equations modelling epidemics and population growth[J].Journal of Mathematical Biology,1980,10(1):13-32.
  • 9van den Driessche P,Watmough J.A simple SIS epidemic model with a backward bifurcation[J].Journal of Mathematical Biology,2000,40(6):525-540.
  • 10Zhou Y L,Zhang W G,Yuan S L.Survival and stationary distribution of a SIR epidemic model with stochastic perturbations[J].Applied Mathematics And Computation,2014,244:118-131.

共引文献29

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部