期刊文献+

Hybrid data-based modeling for the prediction and diagnostics of Li-ion battery thermal behaviors 被引量:1

原文传递
导出
摘要 Lithium-ion battery (LIB) has been deployed for the electrification of the transport sector as a key strategy for climate change mitigation and adaptation. However, it has significant technical challenges such as thermal runaway, requiring a good understanding and accurate prediction of the LIB thermal behavior (heat generation rate). In this study, a novel hybrid approach using an Artificial Neural Network (ANN) is developed for predicting the heat generation rate with discharge current, output voltage, ambient temperature, cell surface temperature, and Depth of Discharge (DOD) as the feature vectors (inputs);where the DOD is estimated with an Extended Kalman Filter (EKF), and direct Coulomb Counting (CC) method, respectively. A shallow neural network utilizing the Marquette-Levenberg algorithm is designed and calibrated using over 8000 cases of the testing data. It is shown that the predicted heat generation rate of LIB agrees well with the experimental results with an accuracy of R > 0.995. Further potential of this hybrid data-based model is evaluated by simulating a thermal management system control and by introducing voltage and current sensor faults for diagnostic purposes. It is shown that, when compared to the experimental value, the relative error of the total heat output generated is less than 2% when there is no sensor fault, and greater than 50% and 25%, respectively, with an induced failure of the current and voltage sensor, demonstrating the ability to build accurate models relying solely on LIB discharge data for sensor diagnostics. This study highlights the combination of using battery thermal behavior with machine learning for real time battery system monitoring, controls and field diagnostics.
出处 《Energy and AI》 2022年第4期73-86,共14页 能源与人工智能(英文)
基金 support from Canadian Urban Transit Research and Innovation Consortium(CUTRIC)via Project Number 160028 Natural Sciences and Engineering Research Council of Canada(NSERC)via a Discovery Grant.
  • 相关文献

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部