期刊文献+

Real-world challenges for multi-agent reinforcement learning ingrid-interactive buildings 被引量:1

原文传递
导出
摘要 Building upon prior research that highlighted the need for standardizing environments for building controlresearch, and inspired by recently introduced challenges for real life reinforcement learning (RL) control, herewe propose a non-exhaustive set of nine real world challenges for RL control in grid-interactive buildings(GIBs). We argue that research in this area should be expressed in this framework in addition to providing astandardized environment for repeatability. Advanced controllers such as model predictive control (MPC) andRL control have both advantages and disadvantages that prevent them from being implemented in real worldproblems. Comparisons between the two are rare, and often biased. By focusing on the challenges, we caninvestigate the performance of the controllers under a variety of situations and generate a fair comparison.
出处 《Energy and AI》 2022年第4期161-170,共10页 能源与人工智能(英文)
  • 相关文献

同被引文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部