摘要
提出了一种基于特征向量中心性推断基因调控网络结构的算法,通过特征向量中心性挖掘基因在网络中的拓扑信息,结合基因对之间的相关性和拓扑信息构建完整的基因调控网络.算法在n个变量和n个样本的DREAM数据集以及包含9个变量和9个样本的大肠杆菌数据集上进行仿真测试,并与现有的基于距离相关性和网络拓扑中性的3种最先进的网络推理算法进行了比较,算法结果显示该方法能够提高基因调控网络结构的预测精度.
An algorithm is proposed to infer the structure of gene regulatory networks based on eigenvector centrality,which mines the topological information of genes in the network by eigenvector centrality and constructs a complete gene regulatory network by combining the correlation between gene pairs and topological information.The algorithm is simulated and tested on a DREAM dataset with n variables and n samples and an E.coli dataset containing 9 variables and 9 samples,and compared with three existing state-of-the-art network inference algorithms based on distance correlation and network topology neutrality,and the algorithm results show that the method can improve the prediction accuracy of the gene regulatory network structure.
作者
刘宽
刘海员
张雷
Liu Kuan;Liu Haiyuan;Zhang Lei(College of Electronic Information and Optical Engineering,Nankai University,Tianjin 300350,China)
出处
《南开大学学报(自然科学版)》
CAS
CSCD
北大核心
2023年第4期40-44,共5页
Acta Scientiarum Naturalium Universitatis Nankaiensis
关键词
基因调控网络
距离相关性
特征向量中心性
网络拓扑
gene regulatory networks
distance correlation
eigenvector centrality
network topology