期刊文献+

中厚板平面形状数字孪生模型与CPS优化系统

Digital twin model and CPS optimization system for plan view pattern control of wide and heavy plates
原文传递
导出
摘要 宽厚板产线装备和自动化技术已经达到较高水平,但进一步提升产品成材率遇到瓶颈。开发了基于深度学习算法融合的钢板图像处理和轮廓特征提取算法,研制出基于机器视觉的高精度宽幅钢板的轮廓在线检测装置,实现了钢板轮廓高精度在线检测,宽度感知精度±2 mm,长度感知误差小于0.5%,侧弯量检测精度±5 mm,头尾不规则变形区剪切精度±5 mm。基于机器视觉测量数据,以轧件尺寸、轧制工艺参数和钢板平面形状控制参数作为输入变量,以钢板头部变形区域的金属体积作为输出变量,建立了基于随机配置网络的平面形状数字孪生模型,根据不同展宽比和延伸比条件下的钢板进行可控点平面形状曲线设定。最后,基于平面形状设定模型以及基于机器视觉的平面形状反馈数据,计算得出头部可控点设定模型对应的体积变化量,并将该变化量计算出3条高斯曲线函数相应的调整值,最终建立了基于机器视觉的平面形状模型滚动优化模型,实现了可控点平面形状(plan view pattern control,PVPC)的智能预测、动态设定和反馈优化。实际应用结果表明,基于传统平面形状控制方法的综合成材率为92.28%,采用基于机器视觉反馈的平面形状CPS优化系统后的综合成材率提高至93.36%,比应用前提高了1%以上。该方法为企业创造了显著的经济效益,极大地增强了企业的市场竞争力。 The equipment and automation technology of the wide and heavy plate production line have reached a high level,but further improving the product yield has encountered a bottleneck.A steel plate image processing and contour feature extraction algorithm based on the fusion of deep learning algorithms was constructed,then a high-precision wide-width steel plate contour online detection device based on machine vision was developed,and high-precision online detection of steel plate contour was realized,which has a width perception accuracy of±2 mm,a length perception error of less than 0.5%,and a lateral bending measurement accuracy of±5 mm.The shear accuracy of irregular deformation area of head and tail is±5 mm.Based on the monitoring data of machine vision,the rolling size,rolling process parameters and PVPC parameters were taken as input variables,and the metal volume in the deformation area of the plate head was taken as output variables,then a digital twin model of plan view pattern control(PVPC)based on random configuration network was established,and the PVPC curve of controllable points was set according to the steel plate under different broadening ratio and extension ratio.Based on the PVPC setting model and the feedback data of the plan view of machine vision,the volume change corresponding to the head controllable point setting model was calculated,and the corresponding adjustment values of three Gaussian curve functions were calculated from the change amount.Finally,a rolling optimization method of the PVPC model based on machine vision was established,which realizes intelligent prediction,dynamic setting and feedback optimization of controllable point PVPC.The practical application results show that the comprehensive yield based on the traditional plane shape control method is 92.28%,and the comprehensive yield based on the machine vision feedback-based PVPC CPS optimization system is increased to 93.36%,which is more than 1%higher than before.This method has created remarkable economic benefits for enterprises and greatly enhanced the market competitiveness of enterprises.
作者 张殿华 李旭 丁敬国 董子硕 ZHANG Dianhua;LI Xu;DING Jingguo;DONG Zishuo(The State Key Laboratory of Rolling and Automation,Northeastern University,Shenyang 110819,Liaoning,China)
出处 《钢铁》 CAS CSCD 北大核心 2023年第9期137-147,共11页 Iron and Steel
基金 国家重点研发计划资助项目(2022YFB3304800) 国家自然科学基金资助项目(U21A20475)。
关键词 宽厚板 平面形状 数字孪生 信息物理系统 数据驱动模型 wide and heavy plate PVPC digital twin cyber-physical system data-driven model
  • 相关文献

参考文献10

二级参考文献97

  • 1Yang Bingru & Shen Jiangtao(Information Engineering School, University of Science and Technology, Beijing100083, P. R. China).KDD Based on Double-Base Cooperating Mechanism and Its Realization of Software[J].Journal of Systems Engineering and Electronics,1999,10(4):1-9. 被引量:3
  • 2池田尚弘,坪田一哉,濑川佑二郎,ほか.压下修正(MAS)压延法の原理[J].鉄と鋼,1999,65(4):S304.
  • 3胡贤磊.中厚板轧机过程控制模犁的研究[D].沈阳:东北大学、2004.
  • 4Langley P.Seleetion of relevant features in machine learning[J].In:Proe.AAAI Fall Symposium on Relevanee,1994:140-144.
  • 5Langley P,Iba W.Average-case analysis of a nearest neighbour algorithm[C] //Proceedings of the Thirteenth International Joint Con-Ferenee on Artifieial Intelligence,1993:889-894.
  • 6Jain A,Zongker D.Feature seleetion:evaluation,application,and Sniall sample pedortnanee[J].IEEE transactions on pattern analysis and machine intelligence,1997,19(2):153-158.
  • 7Xing E,Jordan M,Karp R.Feature seleetion for high-dimensional genomic microarray data[C] //Intl.conf.on Machine Learning,2001:601-608.
  • 8Davies S,Russl S.Np-completeness of searehes for smallest Pos Sible feature sets[C] // In:Proc.Of the AAAI Fall 94Symposium on Relevanee,1994:37-39.
  • 9Narendra PM,Fukunaga K.A branch and bound algorithm for feature subset selection[J].IEEE Transactions on Computers,1997(26):917-922.
  • 10Kittler J,Feature set search algorithms,in:C.H.Chen,Pattern Recognition and Signal Processing,Sijthoff and Noordhoff,1978:41-60.

共引文献222

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部