期刊文献+

一种基于新移动策略的灰狼优化算法

Improved grey wolf optimization algorithm based on a new movement strategy
下载PDF
导出
摘要 针对标准灰狼算法存在的收敛速度慢和容易陷入局部最优的问题,提出一种改进的灰狼优化算法(dynamic approach grey wolf optimization,DAGWO)。该算法采用新的个体位置移动策略,增加狼群攻击的多样性和随机性,提高了收敛速度;同时,引入基于停滞检测的随机初始化策略增加种群多样性,提高了全局搜索能力。通过12个基准测试函数的仿真实验,表明DAGWO算法的收敛速度和求解精度均明显优于其他算法。此外,将DAGWO算法应用于减速器设计问题,证明了其在工程优化问题上的可行性和有效性。 Aiming at the problems of slow convergence speed and easy to fall into local optimum of the standard GWO algorithm,an improved GWO algorithm,dynamic approach grey wolf optimizer(DAGWO),is proposed.The algorithm adopts a new individual position movement strategy,which increases the diversity and randomness of wolves'attacks and improves the convergence speed.Meanwhile,the introduction of a random initialization strategy based on stagnation detection increases population diversity and improves the global search ability.The simulation experiments of 12 benchmark functions show that the DAGWO algorithm significantly outperforms other algorithms in terms of convergence speed and solution accuracy.In addition,the application of DAGWO algorithm to the reducer design proves its feasibility and effectiveness in engineering optimization problems.
作者 张军 代永强 施秋红 Zhang Jun;Dai Yongqiang;Shi Qiuhong(College of Information Science and Technology,Gansu Agricultural University,Lanzhou,Gansu 730070,China;Information&Network Center,Gansu Agricultural University)
出处 《计算机时代》 2023年第10期59-65,69,共8页 Computer Era
基金 国家自然科学基金资助项目(No61402211,No61063028,No61210010) 甘肃农业大学青年导师基金资助项目(GAU-QDFC-2019-02) 甘肃省高等学校创新能力提升项目(2019A-056) 甘肃省自然科学基金资助项目(20JR10RA510)。
关键词 灰狼优化算法 移动策略 停滞检测 基准测试函数 减速器设计 grey wolf optimization(GWO) movement strategy stagnation detection benchmark functions reducer design
  • 相关文献

参考文献5

二级参考文献61

  • 1S. Mirjalili, S. M. Mirjalili, A. Lewis. Grey wolf optimizer. Advances in Engineering Software, 2014, 69(3): 46- 61.
  • 2E. Bonabeau, M. Dorigo, G. Theraulaz. Swarm intelligence: from natural to artificial systems. New York: Oxford Univer- sity Press, 1999.
  • 3J. Kennedy, R. Eberhart. Particle swarm optimization. Proc. of the lEEE hternational Conference on Neural Networks, 1995: 1942- 1948.
  • 4R. Storn, K. Price. Differential evolution-a simple and effi- cient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 1997, 11 (4): 341 - 359.
  • 5M. Dorigo, M. Birattari, T. Stutzle. Ant colony optimization. IEEE Computational lnteUigence Magazine, 2006, 1(4): 28- 39.
  • 6B. M. Vonholdt, D. R. Stahler, E. E. Bangs. A novel assess- ment of population structure and gene flow in grey wolf popu- lations of the Northern Rocky Mountains of the United States. Molecular Ecology, 2010, 19(20): 4412 - 4427.
  • 7C. M. Matthew, J. A. Vucetich. Effect of sociality and season on gray wolf tbraging behavior. Plos One, 2011, 6(3): 1 - 10.
  • 8J. A. Vucetich, R. O. Peterson, T. A. Waite. Raven scaveng- ing favours group foraging in wolves. Animal Behavior, 2004, 67(6): 1117-1126.
  • 9C. Muro, R. Escobedo, L. Spector, et al. Wolf-pack (Canis lu- pus) hunting strategies emerge from simple rules in computa- tional simulations. Behavioral Processes, 2011, 88(3): 192- 197.
  • 10R. Storn. System design by constraint adaptation and diffe- rential evolution. IEEE Trans. on Evolutionary Computation, 1999, 3(1): 22-34.

共引文献129

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部