摘要
方面级情感分析的目标是识别给定句子中特定方面词的情感极性,目前结合图卷积神经网络和句法依存树的大部分研究侧重于根据句子依赖树学习上下文和方面词间的关系,而没有专注于句法依赖树的构建,从而不能充分地利用依赖树上的信息,并且会引入噪声。针对上述问题,提出一种基于多融合邻接矩阵算法的图卷积网络模型。首先使用外部知识来增强句子中情感词的作用,并利用词性进行信息筛选,去除句子中冗余的依赖关系从而得到剪枝句法依赖树,使用多融合邻接矩阵算法将两者结合得到句法信息,将句法信息和BiLSTM层提取的语义信息输入到简化图卷积网络中进行特征融合。在五个数据集上的实验结果表明,提出的改进方法是有效的,且能明显提高模型性能。
The goal of aspect level affective analysis is to identify the affective polarity of specific aspect words in a given sentence.At present,most of the research combining graph convolution neural network and syntactic dependency tree focuses on learning the relationship between context and aspect words according to the sentence dependency tree,but does not focus on the construction of syntactic dependency tree,so it can’t make full use of the information on the dependency tree,and will introduce noise.To solve the above problems,this paper proposes a graph convolution network model based on multi-fusion adjacency matrix algorithm.Firstly,external knowledge is used to enhance the role of emotional words in sentences,and the part-of-speech is used for information filtering to remove redundant dependencies in sentences to obtain pruned syntactic dependency trees.The two are combined by multi-fusion adjacency matrix algorithm to obtain syntactic information.The syntactic information and the semantic information extracted from the BiLSTM layer are input into the simplified graph convolution network for feature fusion.Experimental results on five datasets show that the proposed method is effective and can significantly improve the performance of the model.
作者
谷雨影
高美凤
GU Yuying;GAO Meifeng(Key Laboratory of Advanced Process Control for Light Industry,Ministry of Education,Jiangnan University,Wuxi,Jiangsu 214122,China;School of Internet of Things Engineering,Jiangnan University,Wuxi,Jiangsu 214122,China)
出处
《计算机科学与探索》
CSCD
北大核心
2023年第10期2488-2498,共11页
Journal of Frontiers of Computer Science and Technology
基金
国家自然科学基金(61373126)。
关键词
方面级情感分析
图卷积神经网络(GCN)
外部知识
词性
句法依赖树
aspect sentiment analysis
graph convolutional network(GCN)
external knowledge
part-of-speech
syntactic dependency tree