期刊文献+

改进辛几何模态分解的滚动轴承故障特征提取 被引量:2

Fault Feature Extraction of Rolling Bearing Based on Improved Symplectic Geometric Modal Decomposition
下载PDF
导出
摘要 针对滚动轴承故障冲击信号难以提取的问题,提出了一种改进辛几何模态分解(Improved Symplectic Geometry Modal Decomposition,ISGMD)滚动轴承故障特征提取方法。首先将振动信号进行辛几何模态分解,然后,利用k均值聚类的方法对分解得到的辛几何分量进行聚类,通过包络谱稀疏度指标筛选出故障特征明显的聚类辛几何分量(Cluster Symplectic Geometry Component,CSGC)并进行重构,对重构分量进行包络解调,提取出故障特征。将该方法运用到轴承故障仿真和实验信号,结果表明,这里提出的方法能够有效提取出滚动轴承故障特征。 Aiming at the problem that it is difficult to extract the impact signal of rolling bearing faults,a method based on ISGMD for rolling bearing fault feature extraction is proposed.First,the vibration signal was decomposed by symplectic geomet-ric modal,and then the symplectic geometric components obtained by the decomposition were clustered using the k-means cluster-ing method,and the cluster symplectic geometric components with obvious fault characteristics were screened out through the en-velope spectrum sparsity index CSGC and reconstructed it,and performed envelope demodulation on the reconstructed component to extract the fault characteristics.Applying this method to bearing fault simulation and experimental signals,the results show that the method proposed in this paper can effectively extract the features of rolling bearing faults.
作者 李加伟 张永祥 刘树勇 赵磊 LI Jia-wei;ZHANG Yong-xiang;LIU Shu-yong;ZHAO Lei(Naval University of Engineering,College of Power Engineering,Hubei Wuhan 430033,China)
出处 《机械设计与制造》 北大核心 2023年第10期81-86,89,共7页 Machinery Design & Manufacture
基金 国家自然科学基金项目(51579242)。
关键词 K均值聚类 改进辛几何模态分解 滚动轴承 故障特征提取 k-Means Clustering ISGMD Rolling Bearing Fault Feature Extraction
  • 相关文献

参考文献5

二级参考文献35

  • 1杨宇,于德介,程军圣.基于Hilbert边际谱的滚动轴承故障诊断方法[J].振动与冲击,2005,24(1):70-72. 被引量:78
  • 2许光辉,胡光锐,宋阳.基于奇异值分解的非线性滤波算法[J].上海交通大学学报,2005,39(4):626-628. 被引量:9
  • 3GolubGH VanLoanCF 袁亚湘译.矩阵计算[M].北京:科学出版社,2001.631-639.
  • 4Akritas A G, Malaschonok G I. Applications of singular value decomposition (SVD) [J ]. Mathematics and Computers in Simulation ,2004,67( 1 ) : 15-31.
  • 5Kanjilal P P, Saha G. Fetal ECG extraction from single channel maternal ECG using SVD and SVR spectrum [ C ] ,// Proceedings of the 17th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Montreal : IEEE, 1995 : 187-188.
  • 6Kanjilal P P, Palit S. On multiple pattern extraction using singular value decomposition [ J ]. IEEE Transactions on Signal Processing, 1995,43 ( 6 ) : 1536-1540.
  • 7Wei J J, Chang C J, Chou N K. ECG data compression using truncated singular value decomposition [ J ]. IEEE Transactions on Information Technology in Biomedicine, 2001,5(4) :290-299.
  • 8Cempel C. Multidimensional condition monitoring of mechanical system in operation [ J]. Mechanical Systems and Signal Processing, 2003,17 (6) : 1291-1303.
  • 9Ahmed S M, Alzoubi Q, Abozahhad M. A hybrid ECG compression algorithm based on singular value decomposition and discrete wavelet transform [ J ]. Journal of Medical Engineering and Technology,2007,31 (1) :54-61.
  • 10Walton J, Fairley N. Noise reduction in X-ray photoelectron spectromicroscopy by a singular value decomposition sorting procedure [ J ]. Journal of Electron Spectroscopy and Related Phenomena,2005,148 ( 1 ) :29-40.

共引文献136

同被引文献28

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部