摘要
利用气敏传感器检测SF 6分解组分信息可评估GIS设备运行状态,及早发现绝缘缺陷。金属掺杂的SnP_(3)单层有着良好的吸附性能,在气体检测领域具有应用前景。本文基于第一性原理计算并分析了Pd-SnP_(3)单层吸附SO_(2)、H_(2)S、SOF_(2)和SO_(2)F_(2)后体系的吸附能、态密度、能隙与解吸时间等参数,探讨其用于气体传感器的可能性。结果表明:在吸附性能方面,Pd-SnP_(3)单层仅对SO_(2)F_(2)发生了化学吸附,且结合态密度、差分电荷密度与转移电荷分析进一步验证了该材料对SO_(2)F_(2)的吸附效果明显优于SO_(2)、H_(2)S和SOF_(2);在传感特性方面,仅有SO_(2)F_(2)的吸附使体系的能隙发生了明显变化,且该气体可在398 K及以上温度下从Pd-SnP_(3)单层表面快速脱吸附。综合分析,Pd-SnP_(3)单层对SO_(2)F_(2)具有高选择性和检测性。因此,Pd-SnP_(3)单层具有成为检测SO_(2)F_(2)气敏材料的潜质。本研究为Pd-SnP_(3)单层在气敏材料领域的应用提供理论基础。
Information on SF_(6)decomposition components can be detected using gas-sensitive sensor methods to assess the operational status of GIS equipment and detect the insulation defects early.Metal-doped SnP_(3)monolayer has good adsorption properties,which makes it promising for gas detection applications.Based on the first-principles,the parameters of adsorption energy,density of states,energy gap and desorption time of the system after the adsorption of SO_(2),H 2S,SOF_(2)and SO_(2)F_(2)by Pd-SnP_(3)monolayer were calculated and analyzed to explore the possibility of using this material for gas sensors.The results show that,in terms of adsorption performance,Pd-SnP_(3)monolayer only chemisorb SO_(2)F_(2).Combined with the results of density of states,differential charge density and transfer charge analysis,it is verified that the adsorption of SO_(2)F_(2)is significantly better than that of SO_(2),H 2S and SOF_(2).In terms of sensing characteristics,only the adsorption of SO_(2)F_(2)causes significant change in the energy gap of the system,and desorption of SO_(2)F_(2)from the Pd-SnP_(3)monolayer surface rapidly occur at temperature of 398 K and above.Therefore,the Pd-SnP_(3)monolayer has the potential to become a gas-sensitive material for the detection of SO_(2)F_(2)for its high selectivity and detectability to SO_(2)F_(2).This study provides a theoretical basis for the application of Pd-SnP_(3)monolayers in the field of gas-sensitive materials.
作者
张瑞恩
陈林聪
赵海龙
范晓舟
ZHANG Ruien;CHEN Lincong;ZHAO Hailong;FAN Xiaozhou(Electric Power Research Institute of Hainan Power Grid Co.,Ltd.,Haikou 570311,China;Key Laboratory of Physical and Chemical Analysis for Electric Power of Hainan Province,Haikou 570311,China;Hebei Key Laboratory of Power Transmission Equipment Security Defense,North China Electric Power University,Baoding 071003,China)
出处
《人工晶体学报》
CAS
北大核心
2023年第10期1801-1808,共8页
Journal of Synthetic Crystals
基金
中国南方电网有限责任公司科技项目(073000KK52200009)。