期刊文献+

H-张量的新判定

Some new criteria for the H-tensor
下载PDF
导出
摘要 目的给定一个m阶n维张量,判定该张量是否为H-张量。方法运用H-张量的定义及张量的不等式放缩技巧。结果给出了H-张量的一组新的判别方法。结论这些判定方法仅依赖于所给张量的元素,在判定H-张量时更方便。 Purposes—To give a tensor with order m and dimension n,and to determine whether it is an H-tensor.Methods—The definition of the H-tensor and the inequality scaling technique of the tensor are used to achieve aforesaid purposes.Result—Some new criteria for H-tensor are given.Conclusion—These new criteria only depend on the elements of the given tensor,which is more convenient to identify the H-tensor.
作者 王亚强 温德坤 WANG Ya-qiang;WEN De-kun(School of Mathematics and Information Science,Baoji University of Arts and Sciences,Baoji 721013,Shaanxi,China)
出处 《宝鸡文理学院学报(自然科学版)》 CAS 2023年第3期15-21,共7页 Journal of Baoji University of Arts and Sciences(Natural Science Edition)
基金 陕西省自然科学基础研究计划项目(2020JM-622)。
关键词 张量 对角占优张量 H-张量 tensor diagonally dominant tensor H-tensor
  • 相关文献

参考文献3

二级参考文献28

  • 1QI Li-qun. Eigenvalues of a real supersymmetric tensor[J]. Journal of Symbolic Computa- tion, 2005, 40(5): 1302-1324.
  • 2YANG Yu-ning, YANG Qing-zhi. Further results for Perron-Frobenius theorem for nonnegative tensors [ J]. SIAM Journal on Matrix Analysis and Applications, 2010, 31(5) : 2517-2530.
  • 3L[Chao-qian, LI Yao-tang, KONG Xu. New eigenvalue inclusion sets for tensors[ J]. Numeri- cal Linear Algebra With Applications, 2014, 21( 1 ) : 39-50.
  • 4Kolda T G, Mayo J R. Shifted power method for computing tensor eigenpairs[ J]. SIAM Jour- nal on Matrix Analysis and Applications, 2011, 32(4) : 1095-1124.
  • 5Lim L H. Singular values and eigenvalues of tensors : a variational approach[ C]//Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005, 1 : 129-132.
  • 6QI Li-qun. Eigenvalues and invariants of tensors[J]. Journal of Mathematical Analysis and Applications, 2007, 325(2): 1363-1377.
  • 7QI Li-qun, WANG Fei, WANG Yi-ju. Z-eigenvalue methods for a global polynomial optimiza- tion problem[J]. Mathematical Programming, 2009, 118(2) : 301-316.
  • 8NI Qin, QI Li-qun, WANG Fei. An eigenvalue method for the positive defmiteness identifica- tion problem[ J]. IEEE Transactions on Automatic Control, 2008, 53(5) : 1096-1107.
  • 9NI Gu-yan, QI Li-qun, WANG Feng, WANG Yi-ju. The degree of the E-characteristic polyno- mial of an even order tensor[ J]. Journal of Mathematical Analysis and Applications, 2007, 329(2) : 1218-1229.
  • 10ZHANG Li-ping, QI Li-qun, ZHOU Guang-lu. M-tensors and some applications [ J ]. SlAM Journal on Matrix Analysis and Applications, 2014, 35(2): 437-452.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部