摘要
A novel dual-side primary permanent-magnet vernier linear(DS-PPMVL)motors is proposed.The novelty of the proposed motors is the design of asymmetric consequent poles on the mover,which can effectively enforce the flux-modulation effect and improve the thrust force performance.First,the topologies and operation principle are introduced.Subsequently,the structure relationships between the existing and proposed motors are discussed.Then,a unified analytical model is built.Accordingly,the magnetic field generated by the consequent pole is calculated.Meanwhile,the performance improvement mechanism with the asymmetric consequent pole is analyzed.To improve the efficiency of motor optimization,multi-objective optimization method is adopted to obtain the global optimal solution combination of structure parameters.The proposed motors exhibit higher thrust force,higher force density,less PM consumption,and better overload performance than the existing DS-PPMVL motor.Finally,experiments are conducted based on the existing prototype to verify the accuracy of the design and analysis.
基金
Supported in part by the National Natural Science Foundation of China under Grant 51977099
in part by the Natural Science Foundation of Jiangsu Province under Grant BK20191225.