期刊文献+

基于聚类与改进蚁群搜索的配送中心车货匹配方法

A Method for Matching Vehicles and Goods in Distribution Centers Based on Clustering and Improved Ant Colony Search
下载PDF
导出
摘要 文章针对物流配送中心的配送车辆在运输过程中的装卸货时长、配送车辆行驶时长以及车辆的装载率等问题,构建以配送中心的运营后成本为目标的车货匹配模型,在模型中考虑了装卸货时长、车辆行驶时长以及车辆的装载率等现实因素,通过对该模型的求解为配送中心提供最优匹配方案。该模型先将货物的配送点进行聚类,随后通过对蚁群算法蚂蚁选择下一节点的概率公式进行了改进,将下一节点需要配送货物的重量加入了考量,并采用了一种奖惩机制用作蚁群算法信息素的更新策略和一种随迭代次数而变化的信息素挥发因子,用于提高传统的蚁群算法的收敛速度。用于求解该车货匹配模型。然后通过仿真实验验证模型和算法的有效性,为物流配送中心的车货匹配提供了一个新的解决思路。 This article focuses on the issues of loading and unloading time,driving time,and loading rate of distribution vehicles in logistics distribution centers during transportation.A vehicle cargo matching model is constructed with the goal of post-operational costs of the distribution center.The model takes into account practical factors such as loading and unloading time,vehicle driving time,and vehicle loading rate.By solving the model,the optimal matching scheme is provided for the distribution center.The model first clusters the distribution points of goods,and then improves the probability formula of ant colony algorithm ants selecting the next node,taking into account the weight of goods to be distributed at the next node,and uses a reward and punishment mechanism as a new strategy of ant colony algorithm pheromone and a pheromone volatilization factor that changes with the number of iterations to improve the convergence speed of traditional ant colony algorithm and to solve the vehicle cargo matching model.Then,the effectiveness of the model and algorithm was verified through simulation experiments,providing a new solution for the vehicle cargo matching in logistics distribution centers.
作者 姜自宽 曹亚东 孙哲 JIANG Zikuan;CAO Yadong;SUN Zhe(Post Big Data Technology and Application Engineering Research Center of Jiangsu Province,Nanjing University of Posts and Telecommunications,Nanjing 210023,China;Post Industry Technology Research and Development Center of the State Posts Bureau(Internet of Things Technology),Nanjing University of Posts and Telecommunications,Nanjing 210023,China)
出处 《物流科技》 2023年第20期50-57,共8页 Logistics Sci-Tech
基金 上海市“科技创新行动计划”软科学研究项目(22692111600)。
关键词 车货匹配 聚类 蚁群算法 信息素 vehicle cargo matching clustering ant colony algorithm pheromone
  • 相关文献

参考文献4

二级参考文献17

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部