摘要
针对换接收机后的辐射源个体识别率降低问题,提出了应对接收机更换后的通信辐射源个体识别方法。通过研究发现了更换接收机后的辐射源指纹特征库与标准特征库发生偏移的规律性;以小波系数特征为基础,设计了聚类中心匹配算法和换接收机后的射频指纹特征聚类校正算法。实验中利用实际采集的30类通信辐射源终端样本对算法进行验证,测试换接收机后的识别率。结果显示,未采用聚类校正算法时识别率为64.3%,采用聚类校正算法后识别率提升到92.3%,提出的聚类校正算法有效。
In order to solve the problem that the individual identification rate of the replacement of receivers decreases sharply,this paper proposes a method of identification of the communication transmitter.Through research,it is found that the fingerprint feature library of the communication radiation source after receiving a new receiver has a regular shift from the standard feature library.Based on the wavelet coefficient feature,a clustering center matching algorithm and a radio frequency fingerprint feature clustering correction algorithm after receiving a new receiver are designed.In the experiment,the algorithm is verified using 30 types of communication radiation source terminal samples collected in practice,and the recognition rate after receiving a new receiver is tested.The results show that the recognition rate is 64.3%without using the clustering correction algorithm,and the recognition rate is increased to 92.3%after using the clustering correction algorithm,verifying the effectiveness of the proposed algorithm.
作者
白翔
许从方
谢烨
BAI Xiang;XU Congfang;XIE Ye(China Electronic Technology Cyber Security Co.,LTD,Chengdu 610041,P.R.China)
出处
《重庆邮电大学学报(自然科学版)》
CSCD
北大核心
2023年第5期798-807,共10页
Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金
国家科技工业局基础科研项目(JCKY2021210B067)
四川省科技厅国际科技创新合作项目(2019YFH0163)。
关键词
辐射源个体识别
换接收机
小波系数
射频指纹
specific emitter identification
replacement of receiver
wavelet coefficient
radio frequency fingerprint