摘要
针对现有X光安检图像中违禁物品检测精度低的问题,基于YOLOv5s(you only look once version 5 small)提出了一种改进的违禁物品检测算法。利用重参数思想设计了一种Rep模块以协助YOLOv5s主干网络提取更多特征信息,在不增加推理时间的基础上提高算法检测精度。同时,在YOLOv5s颈部的路径聚合网络中插入2个通道注意力机制压缩-激励模块,加强通道间的相关性,提高整体网络的检测效果。在SIXray数据集上的实验结果表明,在不增加检测时间的基础上,改进的YOLOv5s算法比原始算法在平均精度均值(mAP)、宏精确率(macro precision)、宏召回率(macro recall)和宏F1(macro-F1)这4个评价指标上分别提升了2.6、2.0、4.0和3.0个百分点。
In view of the problems of slow recognition efficiency and low detection accuracy of threat items in the existing X-ray security inspection images,an improved threat item detection algorithm is proposed based on you only look once version 5 small(YOLOv5s).A rep module is designed based on the idea of reparameterization to assist the YOLOv5s backbone network in extracting more feature information,improving the detection accuracy of the algorithm without increasing the inference time.Moreover,two channel attention mechanism SE blocks are inserted into the path aggregation network of the neck of YOLOv5s to strengthen the correlation between channels and improve the detection effect of the whole network.The experimental results on the SIXray dataset show that,compared to the original algorithm,the improved one improves the metrics of mean average precision,macro precision,macro recall,and macro F1 by 2.6,2.0,4.0,and 3.0 percent,respectively.
作者
向娇
李国权
吴建
林金朝
XIANG Jiao;LI Guoquan;WU Jian;LIN Jinzhao(School of Communications and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,P.R.China;Chongqing Key Laboratory of Photoelectronic Information Sensing and Transmitting Technology,Chongqing 400065,P.R.China)
出处
《重庆邮电大学学报(自然科学版)》
CSCD
北大核心
2023年第5期943-951,共9页
Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金
国家自然科学基金项目(U21A20447)
重庆市自然科学基金创新群体科学基金项目(cstc2020icyj-cxttX0002)。
关键词
深度学习
目标检测
违禁物品
X光图像
YOLOv5
deep learning
object detection
threat items
X-ray image
you only look once version 5 small(YOLOv5s)