期刊文献+

考虑参数不确定性的非线性梁随机振动分析

Random vibration analysis of non-linear beams with parameter uncertainties
下载PDF
导出
摘要 非线性系统的随机振动分析一直是结构动力学领域中的难点,已有一些研究表明基于矩等效的线性化方法在功率谱预测上会得到不恰当的分析结果;另一方面,由于不确定性在实际工程中普遍存在,如果同时考虑非线性和不确定性,更是显著增加了问题难度。本文以具有非线性非理想边界梁为研究对象,基于梁模型的动力学微分方程推导了对应的广义频响函数,并应用Volterra级数理论建立了非线性系统随机振动的谱分析方法,最后,结合蒙特卡洛抽样方法计算了具有参数不确定性非线性梁响应功率谱的均值和方差,讨论了不确定性对结构随机振动响应统计特征的影响。 The analysis of random vibration of nonlinear systems has been a difficult area in the field of structural dynamics.Some studies have shown that linearization methods based on moment equivalence give inappropriate analytical results of power spectral density(PSD).On the other hand,since uncertainty is prevalent in practical engineering,it increases the problem difficulty significantly if both nonlinearity and uncertainty are considered.In this paper,beams with a nonlinear nonideal boundary are studied.The corresponding generalized frequency response function is derived based on the differential equation of the beam model.And the spectral analysis method of the nonlinear system with random vibration is established by the Volterra series theory.Finally,the mean and variance of the response PSD of the nonlinear beam with parametric uncertainty are calculated by combining the Monte Carlo method.The influence of uncertainty on the statistical characteristics of the random vibration response of the structure is discussed.The work in this paper is a reference for the prediction and control of stochastic vibration of practical nonlinear systems.
作者 吴鹏辉 肖进 王纪磊 赵岩 WU Peng-hui;XIAO Jin;WANG Ji-lei;ZHAO Yan(Department of Engineering Mechanics,Dalian University of Technology,Dalian 116023,China;Beijing Aerospace System Engineering Institute,Beijing 100076,China;Ningbo Research Institute of Dalian University of Technology,Ningbo 315016,China)
出处 《计算力学学报》 CAS CSCD 北大核心 2023年第5期718-723,共6页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(11772084,U1906233) 国家重点研发计划(2017YFC0307203) 山东省重点研发计划(2019JZZY010801) 中央高校基础研究经费(DUT22ZD209)资助项目。
关键词 随机振动 不确定性 非线性 VOLTERRA级数 功率谱分析 random vibration uncertainty nonlinearity Volterra series PSD Analysis
  • 相关文献

参考文献2

二级参考文献125

  • 1Volterra V. Theory of Functionals and of Integral and Integro-differential Equations. New York: Dover Publications, 1959.
  • 2Wiener N. Response of a non-linear device to noise. Radiation Lab MIT, 1942.
  • 3Schetzen M. The Volterra and Wiener Theories of Nonlinear Systems. Malabar: Krieger, 1980.
  • 4Rugh W J. Nonlinear System Theory: The Volterra-Wiener Approach. Baltimore: Johns Hopkins University Press, 1980.
  • 5Mathews V J, Sicuranza G L. Polynomial Signal Processing. New York: Wiley, 2000.
  • 6Boyd S, Chua L O. Fading memory and the problem of approximating nonlinear operators with Volterra series. IEEE T Circ Syst, 1985, CAS-32: 1150-1161.
  • 7Worden K, Manson G,Tomlinson G R. Harmonic probing algorithm for the multi-input Volterra series. J Sound Vib, 1997, 201: 67-84.
  • 8Mathews V J. Adaptive Volterra filters using orthogonal structures. IEEE Signal Proc Let, 1996, 3: 307-309.
  • 9Peng Z K, Lang Z Q, Billings S A. Resonances and resonant frequencies for a class of nonlinear systems. J Sound Vib, 2007, 300: 993-1014.
  • 10Zhu A, Draxler P J, Hsia C, et al. Digital predistortion for envelope-tracking power amplifiers using decomposed piecewise volterra series. IEEE T Microw Theory, 2008, 56: 2237-2247.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部