期刊文献+

Wind Turbine Optimal Preventive Maintenance Scheduling Using Fibonacci Search and Genetic Algorithm

下载PDF
导出
摘要 Maintenance scheduling is essential and crucial for wind turbines (WTs) to avoid breakdowns andreduce maintenance costs. Many maintenance models have been developed for WTs’ maintenance planning, suchas corrective, preventive, and predictive maintenance. Due to communities’ dependence on WTs for electricityneeds, preventive maintenance is the most widely used method for maintenance scheduling. The downside tousing this approach is that preventive maintenance (PM) is often done in fixed intervals, which is inefficient. In thispaper, a more detailed maintenance plan for a 2 MW WT has been developed. The paper’s focus is to minimize aWT’s maintenance cost based on a WT’s reliability model. This study uses a two-layer optimization framework:Fibonacci and genetic algorithm. The first layer in the optimization method (Fibonacci) finds the optimal numberof PM required for the system. In the second layer, the optimal times for preventative maintenance and optimalcomponents to maintain have been determined to minimize maintenance costs. The Monte Carlo simulationestimates WT component failure times using their lifetime distributions from the reliability model. The estimatedfailure times are then used to determine the overall corrective and PM costs during the system’s lifetime. Finally,an optimal PM schedule is proposed for a 2 MW WT using the presented method. The method used in this papercan be expanded to a wind farm or similar engineering systems.
出处 《Journal of Dynamics, Monitoring and Diagnostics》 2023年第3期157-169,共13页 动力学、监测与诊断学报(英文)
基金 the Natural Sciences and Engineering Research Council of Canada(Grant No.RGPIN-2019-05361)and the University Research Grants Program.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部