期刊文献+

基于运动历史图像的异常行为识别算法研究

Research on abnormal behavior recognition algorithm based on motion history images
下载PDF
导出
摘要 针对日益突出的安全监护问题,本文建立了一个能够较好地识别和预测人体摔倒等异常行为的算法模型。首先,通过人体动作实验分析人体基本的动作特征,运用背景减和混合高斯背景提取算法分别求解人体静态和动态前景,获得人体运动历史图像,运用运动历史图像进行运动分割,并通过Sobel算子求梯度判定人体运动方向,结合运动角度将得到的特征与训练出的动作库里的动作进行特征匹配,进而判断人体行为是否异常。通过这种方法构建的视频监控系统兼具实时性和智能性,可以为视频监控系统的开发提供理论依据。 To solve the increasingly prominent safety monitoring problem,an algorithm model which can effectively identify and predict abnormal behaviors such as human falls is proposed in this study.Firstly,through human motion experiments,the basic motion features of the human body are analyzed.Background subtraction and mixed Gaussian background extraction algorithms are used to separate the static and dynamic foreground of the human body respectively to obtain human motion history images.Motion segmentation is performed with motion history images,and the direction of human motion is determined through Sobel algorithm gradient.The obtained features are matched with the trained actions in the action library based on the motion angle.Then abnormal human behavior is recognized.The video surveillance system constructed using this method possesses real-time and intelligent capabilities,providing a theoretical basis for the development of video surveillance systems.
作者 赵琴 赵团结 郑新桥 秦琴 龙念 邓超 ZHAO Qin;ZHAO Tuanjie;ZHENG Xinqiao;QIN Qin;LONG Nian;DENG Chao(College of International Education,Wuchang Institute of Technology,Wuhan 430065,China;College of Automobile and Traffic Engineering,Wuhan University of Science and Technology,Wuhan 430065,China;Institute of Intelligent Automobile Engineering Research,Wuhan University of Science and Technology,Wuhan 430065,China)
出处 《智能计算机与应用》 2023年第10期56-59,共4页 Intelligent Computer and Applications
基金 武昌工学院科学研究项目(2022KY24) 国家自然科学基金(52002298) 四川省无人系统智能感知控制技术工程实验室开放课题(WRXT2022-001) 教育部产学合作协同育人项目(202102580026)。
关键词 安全监护 异常行为 前景 运动历史图像 特征匹配 safety monitoring abnormal behavior foreground motion history image feature matching
  • 相关文献

参考文献5

二级参考文献191

  • 1杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 2汪培庄.模糊集合论及其应用[M].上海:上海科学技术出版社,1993.100-130.
  • 3Collins R T, Lipton A J, Kanade T. Introduction to the special section on video surveillance. IEEE Transactions on Pattern Analysis and Mazhine Intelligence, 2000, 22(8): 745 - 746
  • 4Hogg D. Model-based vision: a program go see a walking person. Image and Vision Computing, 1983, 1(1): 5-20
  • 5Chain T J, Rehg J M. A multiple hypothesis approach to figure tracking. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Ford Collins, USA: IEEE, 1999. 239-244
  • 6Yilmaz A, Shah S. Recognizing human actions in videos acquired by uncalibrated moving cameras. In: Proceedings of the 10th IEEE International Conference on Computer Vision. Beijing, China: IEEE, 2005. 150-157
  • 7Cheung G K M, Kanade T, Bouguet J Y, Holler M. A real time system for robust 3D voxel reconstruction of human motions. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head Island, USA: IEEE, 2000. 714-720
  • 8Lu C M, Ferrier N J. Repetitive motion analysis: segmentation and event classification. IEEE Transaztions on Pattern Analysis and Machine Intelligence, 2004, 26(2): 258-263
  • 9Bobick A F, Davis J W. The recognition of human movement using temporal templates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(3): 257-267
  • 10Weinland D, Ronfard R, Boyer E. Free viewpoint action recognition using motion history volumes. Computer Vision and Image Understanding, 2006, 104(2): 249-257

共引文献129

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部