摘要
文章针对工业互联网环境下多能源系统的调度问题,提出一种基于协同优化的多能源调度模型。本研究介绍多能源系统调度的基本理论,分析多能源系统的特点,建立多能源协同调度模型,并考虑负荷侧灵活性。为了优化多能源系统的调度效果,文章采用遗传算法、粒子群算法和改进的差分进化算法等进行对比分析,并通过案例分析和仿真实验验证了提出的多能源协同调度模型和优化算法的有效性和可行性,并探讨其面临的问题及未来的研究方向。
Aiming at the scheduling problem of multi energy systems in the Industrial Internet environment,this paper proposes a multi energy scheduling model based on collaborative optimization,introduces the basic theory of multi energy system scheduling,analyzes the characteristics of multi energy systems,establishes a multi energy collaborative scheduling model,and considers the flexibility of the load side.In order to optimize the scheduling effect of multi energy systems,this article uses genetic algorithm,particle swarm optimization algorithm,and improved differential evolution algorithm for comparative analysis.Through case analysis and simulation experiments,the effectiveness and feasibility of the proposed multi energy collaborative scheduling model and optimization algorithm are verified,and the problems it faces and future research directions are discussed.
作者
何俊山
He Junshan(Shanghai Dimension Information Technology Co.,Ltd.,Shanghai 200020,China;Yundi Software(Shanghai)Co.,Ltd.,Shanghai 201700,China)
出处
《无线互联科技》
2023年第16期124-126,130,共4页
Wireless Internet Technology
关键词
工业互联网
多能源系统
协同调度
遗传算法
粒子群算法
industrial Internet
multi energy system
collaborative scheduling
genetic algorithm
particle swarm optimization