期刊文献+

Experimental investigation of a latent heat thermal energy storage unit encapsulated with molten salt/metal foam composite seeded with nanoparticles

原文传递
导出
摘要 Molten salt has been widely used in latent heat thermal energy storage(LHTES)system,which can be incorporated into hybrid photovoltaic/thermal solar system to accommodate the built environment.Solar salt(60 wt.%NaNO 3 and 40 wt.%KNO 3)was employed as the phase change materials(PCMs)in this study,and both aluminum oxide(Al_(2)O_(3))nanopowder and metal foam were used to improve the properties of pure solar salt.The synthesis of the salt/metal foam composites seeded with Al_(2)O_(3)nanopowder were performed with the two-step and impregnation methods,and the composite PCMs were characterized morphologically and thermally.Then pure solar salt,the salt/2 wt.%Al_(2)O_(3)nanopowder and salt/copper foam composite seeded with 2 wt.%Al_(2)O_(3)nanopowder were encapsulated in a pilot test rig,respectively,where a heater of 380.0 W was located in the center of the LHTES unit.The charging and discharging processes of the LHTES unit were conducted extensively,whereas the heating temperatures were controlled at 240℃,260℃and 280℃respectively.Temperature evolutions at radial,angular and axial positions were recorded,and the time-durations and volumetric mean powers during the charging and discharging processes were obtained and calculated subsequently.The results show that physical bonding between Al_(2)O_(3)nanopowder and nitrate molecule has been formed from the morphological pictures together with XRD and FTIR curves.Slight changes are found between the melting/freezing phase change temperatures of the salt/metal foam composites seeded with Al_(2)O_(3)nanopowder and those of pure solar salt,and the specific heats of the salt/Al_(2)O_(3)nanopowder composite slightly increase with the addition of Al_(2)O_(3)nanopowder.The time-duration of the charging process for the salt/copper foam composite seeded with Al_(2)O_(3)nanopowder at the heating temperature of 240℃can be reduced by about 74.0%,compared to that of pure solar salt,indicating that the heat transfer characteristics of the LHTES unit encapsulated with the salt/copper foam composite seeded with Al_(2)O_(3)nanopowder can be enhanced significantly.Consequently,the mean volumetric powers of the charging process were distinctly enhanced,e.g.,the volumetric mean power of heat storage can reach 110.76 kW/m 3,compared to 31.94 kW/m 3 of pure solar salt.However,the additive has little effect on the volumetric mean power of heat retrieval because of the domination of natural air cooling.
出处 《Energy and Built Environment》 2023年第1期74-85,共12页 能源与人工环境(英文)
基金 This research has received funding from the Shanghai Pujiang Pro-gram(No.20PJ1400200) the Shanghai overseas high level Talents Pro-gram,the Fundamental Research Funds for the Central Universities of China(No.2232021D-11&2232018D3-37) European Union’s Horizon 2020 research and Innovation Programme under the Marie Sklodowska-Curie grant(No.706788) the Natural Science Foundation of China(No.52006030).The authors would like to extend their acknowledge-ment to Dr.Afrah Awad and Mr.Hailong Ma for the kind help.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部