摘要
为科学防控煤矿安全事故,深度挖掘不安全行为数据隐藏的信息和知识;基于Python算法、LDA主题模型和NetDraw工具,选取2017—2021年陕西省某大型煤矿集团的44 069条不安全行为数据进行分词处理、主题提取,绘制矿工不安全行为语义网络图并对矿工不安全行为语义网络的中心性进行分析;研究得出5个矿工不安全行为高频主题和3个矿工不安全行为高发地点。
In order to prevent and control coal mine safety accidents,we should deeply mine the hidden information and knowledge of unsafe behavior data.Based on Python,LDA and NetDraw,44069 pieces of unsafe behavior data of a large coal mine group in Shaanxi Province from 2017 to 2021 are selected for word segmentation and topic extraction,and the miner unsafe behavior semantic network diagram is drawn to analyze the centrality of miner unsafe behavior semantic network.5 miners’unsafe behavior high frequency topics and 3 miners’unsafe behavior high incidence sites are obtained.
作者
李琰
刘珍
陈南希
LI Yan;LIU Zhen;CHEN Nanxi(School of Management,Xi’an University of Science and Technology,Xi’an 710000,China)
出处
《煤矿安全》
CAS
北大核心
2023年第9期254-257,共4页
Safety in Coal Mines
基金
国家自然科学基金资助项目(51604216)
教育部人文社科资助项目(21YJA630050)
陕西省社会科学基金资助项目(2020R010)
西安市社会科学规划基金资助项目(GL14,22GL38)。