期刊文献+

基于极限学习机的短期交通流预测混合优化模型 被引量:2

Short-term Traffic Flow Prediction Based on ASO-ELM Hybrid Optimization Model
下载PDF
导出
摘要 交通流的动态性、不确定性和非线性等特性导致交通流难以精确预测,本文在极限学习机(Extreme Learning Machine,ELM)的基础上,通过嵌入原子搜索算法(Atom Search Optimization,ASO),构建ASO-ELM短期交通流预测混合优化模型,对比现有短期交通流预测模型,分析混合优化模型在短期交通流预测领域的表现。实验选取荷兰阿姆斯特丹市A10环形公路为路网原型,使用ASO-ELM混合模型与常见交通流预测模型进行对比实验。实验结果表明:ASO-ELM混合模型在4个数据集下的平均绝对百分比误差(Mean Absolute Percentage Error,MAPE)相较于ELM模型分别下降了4.3%、3.5%、6.9%和5.4%,均方根误差(Root Mean Squared Error,RMSE)分别下降了4.8%、4.0%、2.0%和5.2%;其次,与人工神经网络(Artificial Neural Network,ANN)相比,MAPE分别下降了9.6%、8.6%、9.8%和5.0%,RMSE也分别下降了4.5%、5.9%、2.6%和1.7%。研究成果揭示了混合优化模型在短期交通流预测领域的潜力。 Due to the dynamic,uncertain and nonlinear characteristics of the short-term traffic flow,it is difficult to predict traffic flow accurately.In this paper,we build an ASO-ELM short-term traffic flow prediction hybrid optimization model based on Extreme Learning Machine(ELM)by embedding Atom Search Optimization(ASO).The hybrid optimization model is used to explore the prediction performance of the hybrid optimization model in the field of short-term traffic flow prediction by comparing the existing short-term traffic flow prediction models.The A10 ring road in Amsterdam,the Netherlands,is selected as the prototype of the road network,and the ASO-ELM hybrid model is used to compare with common traffic flow forecasting models for simulation forecasting experiments.The experimental results show that the mean absolute percentage error(MAPE)of the ASO-ELM hybrid model decreases by 4.3%,3.5%,6.9%and 5.4%,respectively,and the root mean squared error(RMSE)decreases by 4.8%、4.0%、2.0%and 5.2%,respectively.Secondly,MAPE decreased by 9.6%,8.6%,9.8%and 5.0%,respectively,and RMSE decreased by 4.5%,5.9%,2.6%and 1.7%,respectively,compared to the Artificial Neural Network(ANN).The research results reveal the potential of hybrid optimization models in the field of short-term traffic flow forecasting and provide an important basis for model exploration in the field of short-term traffic flow forecasting.
作者 蔡浩 李林峰 李涵 李新 周腾 CAI Hao;LI Lin-feng;LI Han;LI Xin;ZHOU Teng(Department of Computer Science and Technology,Shantou University,Shantou 515063,Guangdong,China;School of Cyberspace Security,Hainan University,Haikou 570228,China)
机构地区 汕头大学 海南大学
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2023年第5期75-82,183,共9页 Journal of Transportation Systems Engineering and Information Technology
基金 2021广东省科技重点专项(STKJ2021021)。
关键词 智能交通 短期交通流预测 混合预测模型 原子搜索算法 极限学习机 intelligent transportation short-term traffic flow forecasting hybrid forecasting models atom search optimization extreme learning machine
  • 相关文献

参考文献5

二级参考文献22

  • 1姚亚夫,曹锋.基于ARIMA的交通流量短时预测[J].交通科技与经济,2006,8(3):105-107. 被引量:10
  • 2姚智胜,邵春福,高永亮.基于支持向量回归机的交通状态短时预测方法研究[J].北京交通大学学报,2006,30(3):19-22. 被引量:51
  • 3杨兆升,王媛,管青.基于支持向量机方法的短时交通流量预测方法[J].吉林大学学报(工学版),2006,36(6):881-884. 被引量:80
  • 4VLAHOGIANNI E I,KARLAFTIS M G,GOLIAS J C.Shortterm traffic forecasting:where we are and where we’re going[J].Transportation Research Part C Emerging Technologies,2014,43(1):3-19.
  • 5CHEN P H,LIN C J,SCHOLKOPF B.A tutorial onν-support vector machines[J].Applied Stochastic Models in BusinessandIndustry,2005,21(2):111-136.
  • 6BREIMAN L.Random forests[J].Machine Learning,2001,45(1):5-32.
  • 7BREIMAN L,FRIEDMAN J,CHARLES J S,et al.Classification and Regression Trees[M].US:Chapman and Hall,1984.
  • 8HASTIE T,TIBSHIRANI R,FRIEDMAN J.The element of statistical learning:data mining,inference,and prediction.(2th ed)[M].US:Springer,2009.
  • 9MCKINNEY W.Python for data analysis[M].US:O’Reilly,2012.
  • 10BERGSTRA J,BENGIO Y.Random searchforhyper-parameter optimization[J].Journal of Machine Learning Research,2012,13(1):281-305.

共引文献225

同被引文献23

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部