期刊文献+

基于升降轨Sentinel-1影像的格陵兰后向散射系数入射角归一化方法 被引量:2

A backscatter coefficient normalization method to incidence angle based on ascending and descending Sentinel-1 SAR imagery at the Greenland
原文传递
导出
摘要 合成孔径雷达(SAR)影像的后向散射系数与电磁波入射角以及地表特性密切相关,因此应用宽幅SAR影像对格陵兰冰盖开展研究分析时,应订正入射角对后向散射回波信号的影响。目前主流的针对冰盖表面入射角改正算法为余弦平方法,该方法假设冰雪表面为朗伯体对SAR影像后向散射系数进行改正,但将冰体假设为朗伯体存在明显不合理之处。本文提出了一种基于线性回归的后向散射系数改正算法,该方法假设近同时获取的格陵兰冰盖Sentinel-1双极化SAR影像后向散射特性保持不变,后向散射系数的差异仅与入射角差异相关。通过寻找后向散射系数与入射角之间的定量关系,获得归一化的双极化SAR影像后向散射系数。考虑到在不同季节和海拔的格陵兰冰盖冰雪表面后向散射特性不同,本文引入了海拔和季节两个参数,估算了不同季节与海拔条件下的归一化改正系数。将本文提出的后向散射系数改正方法应用于格陵兰Sentinel-1影像,结果表明本文提出的方法对于同极化影像的改正优于余弦平方法,而交叉极化影像改正效果与余弦平方法相近。本研究提出的改正方法可以更好地改正格陵兰冰盖的Sentinel-1宽幅SAR影像的后向散射系数,降低后续应用的不确定性。 The backscatter coefficient of Synthetic Aperture Radar(SAR)images is highly related to its incidence angle and surface characteristics.For analysis based on the backscatter coefficient,the influence of incidence angle on the backscattered signal must be corrected when analyzing wide-swath SAR images,for example,monitoring ice sheets and glaciers.The cosine square correction method is commonly used for such purpose,which assumes the snow and ice surface are Lambertian when normalizing the SAR images backscatter coefficient scattered by the ice and snow surface to a reference incidence angle.However,presuming scattering radar signal equally to all directions lying in the half space adjacent to the surface is unreasonable for the Greenland Ice Sheet(GIS)because the dry-snow zone is transparent to the C-band signal,volume scattering dominates percolation zone,and specular scattering dominates the wet-snow zone and thebare-icezone.In this paper,a backscatter coefficient normalization algorithm is proposed based on linear regression to backscatter coefficient differences and incidence angle differences of two quasi-simultaneous observations,usually one obtained in ascending tracks and another in descending tracks.These two Sentinel-1 images share the same backscatter characteristics on the GIS,and only incidence angle differences induce backscatter coefficient differences.Considering the backscatter characteristics of the GIS surface vary with seasons and altitudes,which leads to variations of the regression coefficients,these two factors are introduced to evaluate the different regression coefficients.Then,the backscatter coefficient of Sentinel-1 dual-polarization SAR images can be normalized to a reference angle according to the regression coefficient at the given altitude and season.In the model training part in this paper,the regression coefficients are derived with Sentinel-1 images obtained in northwest Greenland,where the overlapping area between ascending and descending acquisitions is large enough to cover different glacier zones.In the testing part,our proposed backscatter coefficient correction method with the derived regression coefficients is applied to the Sentinel-1 images in IW and EW modes observing most areas of the GIS,and the backscatter coefficients at the overlapping area are compared.Results show the proposed method performs better than the cosine-square method for correcting the co-polarization images and similarly for correcting the cross-polarization images.For IW mode imagery,RMSEs are lower than 0.7,1.0,2.0,and 1.0 dB for Jan,Apr,Jul,and Oct,respectively.For EW mode imagery,RMSEs are lower than 1.4,1.9,2.9,and 2.9 dB for Jan,Apr,Jul,and Oct,respectively.Our proposed method shows lower RMSE for cross-polarization SAR images than co-polarization SAR images.Our method is performed in the same data source of NSIDC-0723,Greenland Image Mosaic from Sentinel-1A and 1B v3,and yields SAR imagery mosaics without sharp changes of backscatter coefficient among adjacent orbits.The proposed backscatter coefficient normalization method can benefit correcting the backscatter coefficient of wide-swath Sentinel-1 SAR images for the GIS and reduce the uncertainty of the subsequent applications including SAR image mosaicking and surface freeze-thaw monitoring.
作者 陈晓 李刚 陈卓奇 鞠琦 郑雷 程晓 CHEN Xiao;LI Gang;CHEN Zhuoqi;JU Qi;ZHENG Lei;CHENG Xiao(School of Geospatial Engineering and Science,Sun Yat-sen University,and Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai),Zhuhai 519082,China)
出处 《遥感学报》 EI CSCD 北大核心 2023年第9期2072-2084,共13页 NATIONAL REMOTE SENSING BULLETIN
基金 国家重点研发计划(编号:2019YFC1509104) 国家自然科学基金(编号:41901384) 广州市科技计划项目(编号:202102020337) 南方海洋科学与工程广东省实验室(珠海)创新团队建设项目(编号:311021008)。
关键词 遥感 后向散射系数归一化 入射角 哨兵一号 格陵兰冰盖 合成孔径雷达 冰冻圈 冰川 影像 镶嵌 remote sensing backscatter coefficient normalization incidence angle Sentinel-l Greenland Ice Sheet SAR,cryosphere glacier image mosaicking
  • 相关文献

参考文献2

二级参考文献102

  • 1周建民,李震,李新武.基于ALOS/PALSAR雷达干涉数据的中国西部山谷冰川冰流运动规律研究[J].测绘学报,2009,38(4):341-347. 被引量:26
  • 2周春霞,鄂栋臣,廖明生.InSAR用于南极测图的可行性研究[J].武汉大学学报(信息科学版),2004,29(7):619-623. 被引量:22
  • 3宋波,何元庆,庞洪喜,卢爱刚,赵井东,宁宝英,院玲玲,张忠林.基于遥感和GIS的我国季风海洋型冰川区冰碛物覆盖型冰川边界的自动识别[J].冰川冻土,2007,29(3):456-462. 被引量:29
  • 4李震,廖静娟,等.合成孔径雷达地表参数反演模型与方法[M].北京:科学出版社,2011.
  • 5Jacob T, Wahr J, Pfeffer W, et al. Recent contributions of glac- iers and ice caps to sea level rise[J]. Nature, 2012, 482: 514- 518.
  • 6TrouvrE, Vasile G, Gay M, et al. Combing airborne photographs and spaceborne SAR data to monitoring temperature glaciers: Po- tentials and limits [ J ]. IEEE Transactions on Geoscience and Re- mote Sensing,2007, 45 : 905-924.
  • 7Cuffey K M, Paterson W S B. The Physics of Glaciers, Fourth E- dition [ M 1. USA and UK : Elsevier, 2010 : 1-16.
  • 8Forster R, Isacks B, Das S. Shuttle imaging radar (SIR-C/X- SAR) reveals near-surface properties of the South Patagonian Ice- field[ J]. Journal of Geophysical, 1996, 101:23 169-23 180.
  • 9Smith L C, Forster R R, Isacks B, et al. Seasonal climatic forc- ing of alpine glaciers revealed with orbital synthetic aperture radar [ J]. Journal of Glaciology, 1997,43 : 480-488.
  • 10Fung A. Microwave Scattering and Emission Models and Their Ap- plications[ M]. Boston and London: Artech House, 1994.

共引文献13

同被引文献27

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部