摘要
钙钛矿锰酸盐(La_(2/3)Sr_(1/3)MnO_(3))基异质结由于存在强自旋轨道耦合作用、高温铁磁性、强金属导电性以及丰富的氧八面体变化等特点,近年来在氧化物自旋电子学、拓扑电子态以及磁存储功能材料等应用方面备受关注.本综述主要针对锰酸盐异质结中磁各向异性变化,及其在氧化物自旋电子学器件中可能的应用进行了及时系统的总结.首先,本文简要介绍了锰酸盐异质结中的热点研究内容以及本文的出发点;其次,介绍了利用应变和衬底取向对锰酸盐异质结磁各向异性的调控;再次,重点介绍了界面耦合效应、氧八面体旋转、对称性破缺等新型界面工程手段对磁各向异性的调控;最后,介绍了电场调控磁各向异性的可逆变化方法,并总结了一些新型调控磁各向异性的手段.本综述将有效推动锰氧化物中磁各向异性的进一步研究,并且为锰氧化物在高效磁存储器件中的应用指明方向.
The perovskite La_(2/3)Sr_(1/3)MnO_(3)(LSMO)-based heterostructures have attracted considerable interest for their potential applications in oxide spintronics,topological electronics,and electrocatalysis.This interest originates due to several key properties exhibited by these heterostructures,which include spin-orbit coupling,high-temperature ferromagnetism,high conductivity,and rich oxygen octahedral distortion.This paper provides a systematic and timely review of the magnetic anisotropy progression in LSMO-based heterostructures because it presents opportunities in oxide spintronic applications.First,a description of the current status of LSMO-based heterostructures is provided,followed by an explanation of the motivations for this review.The factors of compressive strain and substrate orientation are then incorporated to manipulate magnetic anisotropy in manganite oxides heterostructures.The third section summarizes the effects of recent interfacial coupling engineering,oxygen octahedral rotation,and symmetry mismatch dependency on magnetic anisotropy in manganite heterostructures.The fourth section examines the electric-field control of magnetic anisotropy in manganite heterostructures,including the ionic-liquid-gating and reversible switching.Finally,a conclusion of the review is presented,along with a summary of future challenges and outlooks in the tuning methods of magnetic anisotropy for applications in highdensity energy-storage magnets.
作者
周国伟
姬慧慧
康鹏华
窦佳瑞
王思琪
许小红
Guowei Zhou;Huihui Ji;Penghua Kang;Jiarui Dou;Siqi Wang;Xiaohong Xu(School of Chemistry and Materials Science of Shanxi Normal University&Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education,Taiyuan 030006,China;Research Institute of Materials Science of Shanxi Normal University,Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and Technology,Taiyuan 030006,China)
基金
financially supported by the National Natural Science Foundation of China (12174237, 51901118, 51871137, and 52171183)
the 1331 Engineering of Shanxi Province, the Research Project Supported by Shanxi Scholarship Council of China (2021-093)
the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (2020L0237)
the Project funded by China Postdoctoral Science Foundation (2023M730422)。