期刊文献+

提高锂离子电池负极的电化学储锂容量和倍率性能—三维互连碳管-NiO-SnO_(2)网格膜

Enhancing electrochemical energy storage capacity and rate performance of the anode with a 3D interconnected carbon tube-NiO-SnO_(2) composite scaffold
原文传递
导出
摘要 二氧化锡(SnO_(2))具有高的理论比容量,有望作为下一代锂离子电池负极材料.然而,Sn向SnO_(2)的不可逆转化以及充放电过程中巨大的体积变化限制了其实际的应用.本文基于三维互连多孔氧化铝模板,设计合成了一种由内腔同时填充NiO和SnO_(2)纳米颗粒的碳管基元相互连接组成的三维碳管网格膜,可以直接作为自支撑的高性能锂离子电池负极.该复合框架利用了NiO和SnO_(2)纳米颗粒的协同作用,不仅能够促进Sn向SnO_(2)的可逆转变,提高首次库伦效率,而且还可以缓释充放电过程中SnO_(2)剧烈的体积变化.此外,相互连接的三维碳管框架可以负载大量NiO和SnO_(2)纳米颗粒,缩短Li+的扩散距离,并作为快速的电子传输通道.因此,这种独特的结构赋予了该电极超高的储锂容量和倍率性能在1 A g^(-1)循环200次后,比容量达到928.5 mA h g^(-1),并且在4 A g^(-1)的高电流密度下仍然具有633.5 mA h g^(-1)的比容量.总之,这种独特的一体化结构在锂离子电池等储能领域具有广阔的应用前景. Tin dioxide(SnO_(2))possesses great potential as an anode material for lithium-ion batteries(LIBs)owing to its high theoretical specific capacity.However,the irreversible conversion of Sn to SnO_(2) and enormous volume variation during the charge/discharge process limit the battery energy storage performance.In this study,ultrafine NiO and SnO_(2) nanoparticles(NPs)decorated on a three-dimensionally(3D)interconnected and structurally integrated carbon tube(CT)scaffold(NiO/SnO_(2)-NPs@3D-CT)is developed as an anode,eliminating any inactive component in the electrode.The NiO not only contributes to the capacity but also undergoes reduction to Ni during the lithiation process,which catalyzes Li2O decomposition and facilitates the reversible conversion of Sn to SnO_(2).Additionally,the open space of the 3D scaffold can host a large number of NiO/SnO_(2) NPs and results in a short diffusion distance of Li+between the electrolyte and the Li+host.The interconnected 3D-CT network serves as a fast electron transport channel.Consequently,the unique structure endows the anode with high Li-ion storage capacity(928.5 mA h g^(−1) at a current density of 1 A g^(−1) after 200 cycles)and superior high-rate performance;for instance,a reversible capacity of 633.5 mA h g^(−1) can be achieved even at a current density of 4 A g^(−1).We believe that the unique,integrated 3D structure holds great promise as an anode for LIBs and that its applications can be further extended to other fields.
作者 张世平 韩方明 潘其军 林豆 陈干 牧小卫 朱晓光 邵成 吴年强 孟国文 Shiping Zhang;Fangming Han;Qijun Pan;Dou Lin;Gan Chen;Xiaowei Mu;Xiaoguang Zhu;Cheng Shao;Nianqiang Wu;Guowen Meng(Key Laboratory of Materials Physics,and Anhui Key Laboratory of Nanomaterials and Nanotechnology,Institute of Solid State Physics,Hefei Institutes of Physical Science,Chinese Academy of Sciences,Hefei 230031,China;Department of Materials Science and Engineering,University of Science and Technology of China,Hefei 230026,China;Department of Chemical Engineering,University of Massachusetts Amherst,Amherst,MA 01003-9303,United States)
出处 《Science China Materials》 SCIE EI CAS CSCD 2023年第9期3493-3500,共8页 中国科学(材料科学(英文版)
基金 supported by the National Natural Science Foundation of China (91963202 and 52072372) the Key Research Program of Frontier Sciences (CAS, QYZDJ-SSW-SLH046) the CAS/SAFEA International Partnership Program for Creative Research Teams Hefei Institutes of Physical Science, Chinese Academy of Sciences Director’s Fund (YZJJZX202018)。
关键词 充放电过程 锂离子电池 倍率性能 理论比容量 一体化结构 体积变化 三维互连 传输通道 electrochemical energy storage anode SnO_(2)nanoparticle NiO nanoparticle carbon tube
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部