期刊文献+

Recent advances in stimuli-response mechanisms of nano-enabled controlled-release fertilizers and pesticides 被引量:1

原文传递
导出
摘要 Nanotechnology-enabled fertilizers and pesticides,especially those capable of releasing plant nutrients or pesticide active ingredients(AIs)in a controlled manner,can effectively enhance crop nutrition and protection while minimizing the environmental impacts of agricultural activities.Herein,we review the fundamentals and recent advances in nanofertilizers and nanopesticides with controlled-release properties,enabled by nanocarriers responsive to environmental and biological stimuli,including pH change,temperature,light,redox conditions,and the presence of enzymes.For pH-responsive nanocarriers,pH change can induce structural changes or degradation of the nanocarriers or cleave the bonding between nutrients/pesticide AIs and the nanocarriers.Similarly,temperature response typically involves structural changes in nanocarriers,and higher temperatures can accelerate the release by diffusion promoting or bond breaking.Photothermal materials enable responses to infrared light,and photolabile moieties(e.g.,o-nitrobenzyl and azobenzene)are required for achieving ultraviolet light responses.Redox-responsive nanocarriers contain disulfide bonds or ferric iron,whereas enzyme-responsive nanocarriers typically contain the enzyme’s substrate as a building block.For fabricating nanofertilizers,pHresponsive nanocarriers have been well explored,but only a few studies have reported temperature-and enzyme-responsive nanocarriers.In comparison,there have been more reports on nanopesticides,which are responsive to a range of stimuli,including many with dual-or triple-responsiveness.Nano-enabled controlledrelease fertilizers and pesticides show tremendous potential for enhancing the utilization efficiency of nutrients and pesticide AIs.However,to expand their practical applications,future research should focus on optimizing their performance under realistic conditions,lowering costs,and addressing regulatory and public concerns over environmental and safety risks.
出处 《Eco-Environment & Health》 2023年第3期161-175,共15页 生态环境与健康(英文)
基金 supported by the National Natural Science Foundation of China(22125603 and 22020102004) Tianjin Municipal Science and Technology Bureau(21JCZDJC00280,21JCJQJC00060) the Fundamental Research Funds for the Central Universities(63233056) the Ministry of Education of China(T2017002).
  • 相关文献

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部