期刊文献+

基于深度学习的甲状腺疾病超声图像诊断研究综述 被引量:1

Review on ultrasonographic diagnosis of thyroid diseases based on deep learning
原文传递
导出
摘要 近年来,甲状腺疾病的发病率显著升高,超声检查是甲状腺疾病诊断的首选检查手段。同时,基于深度学习的医疗影像分析水平快速提高,超声影像分析取得了一系列里程碑式的突破,深度学习算法在医学图像分割和分类领域展现出强大的性能。本文首先阐述了深度学习算法在甲状腺超声图像分割、特征提取和分类分化三个方面的应用,其次对深度学习处理多模态超声图像的算法进行归纳总结,最后指出现阶段甲状腺超声图像诊断存在的问题,展望未来发展方向,以期促进深度学习在甲状腺临床超声图像诊断中的应用,为医生诊断甲状腺疾病提供参考。 In recent years,the incidence of thyroid diseases has increased significantly and ultrasound examination is the first choice for the diagnosis of thyroid diseases.At the same time,the level of medical image analysis based on deep learning has been rapidly improved.Ultrasonic image analysis has made a series of milestone break-throughs,and deep learning algorithms have shown strong performance in the field of medical image segmentation and classification.This article first elaborates on the application of deep learning algorithms in thyroid ultrasound image segmentation,feature extraction,and classification differentiation.Secondly,it summarizes the algorithms for deep learning processing multimodal ultrasound images.Finally,it points out the problems in thyroid ultrasound image diagnosis at the current stage and looks forward to future development directions.This study can promote the application of deep learning in clinical ultrasound image diagnosis of thyroid,and provide reference for doctors to diagnose thyroid disease.
作者 戚枫源 邱敏(综述) 魏国辉(审校) QI Fengyuan;QIU Min;WEI Guohui(College of Intelligence and Information Engineering,Shandong University of Traditional Chinese Medicine,Jinan 250355,P.R.China;Department of Thyroid Surgery,Affiliated Hospital of Jining Medical University,Jining,Shandong 272007,P.R.China)
出处 《生物医学工程学杂志》 EI CAS 北大核心 2023年第5期1027-1032,共6页 Journal of Biomedical Engineering
基金 国家自然科学基金(61702087) 山东省自然科学基金面上项目(ZR2022MH203) 山东省研究生教育优质课程和专业学位研究生教学案例库立项项目(SDYAL20050) 山东省医药卫生科技发展计划(202109040649) 山东中医药大学教育教学研究课题(实验教学专项)(SYJX2022013)。
关键词 深度学习 甲状腺疾病 超声图像 多模态图像 Deep learning Thyroid disease Ultrasonic image Multimodal image
  • 相关文献

参考文献2

二级参考文献9

共引文献15

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部